
/

make
BOOTSTRAPPER'S HANDBOOK

building startups the indie way

by Product Hunt's 2x Maker of the Year

+ founder of Nomad List + Remote OK + Hoodmaps

 @levelsio

This copy of MAKE Book is owned by:

Pierre Guilbaud

p.guilbaud@tbs-education.org

77.158.188.153

Last updated: 2020-12-19

/

Because you have little time, here's the mega short TL;DR (too long; didn't
read) summary of this book:

💡 Idea
Get an idea from problems in your own life. If you don't have problems
that are original enough, become a more original person. Don't build
products that are solutions in search of a problem.

🛠 Build
Build your idea with the tools you already know. Don't spend a year
learning some language you'll never use. Don't outsource building to
other people, that's a competitive disadvantage. Build only the core
functionality. The rest comes later.

🚀 Launch
Launch early and multiple times. Launch to famous startups websites
(like Product Hunt, Hacker News, The Next Web), mainstream websites
(like Reddit) and mainstream press (like Forbes).

But more importantly, find where your specific audience hangs out on
the internet (or in real life) and launch there. Launch in a friendly way,
that means "here's something I made that might be useful for you",
instead of acting like you're some big giant new startup coming to
change the world.

🌱 Grow
Grow organically. A great product that people really need which is
better than the rest will pull people in. You don't need ads for that.

/

Don't hire people if there's no revenue yet. Don't hire many people if
there's revenue either. Stay lean and fast. Do things yourself.

💰 Monetize
Monetize by asking users for money. Don't sell their data. Don't put ads
everywhere. Don't dilute your product. Be honest that you need money
to build the product they love and they'll be fine paying for it.

🤖 Automate
Automate by writing programs that do stuff that you do repeatedly.
Only automate if it's worth the time saved. For stuff that's too hard to
automate or not worth it, hire contractors. Let them work as
autonomously as possible. Where possible let robots manage them (for
example by giving them alerts when things happen in your product).
This lets you take time off, or work on your next business.

🚪 Exit
Exit by not putting your company for sale, but letting buyers come to
you. Filter out the majority of buyers that aren't serious. With the
serious buyers left, negotiate a price by valuating your own company.
Price it agressively high. Always keep the bargaining power on your side
of the table. Get paid in cash, not stock and don't fall for the trap of
earnout bonuses. Make sure you're prepared for the emotional fallout of
selling (and missing) your business.

🤝 Ethics
Not a chapter but important: be ethical, and don't cut corners on ethics.
You'll be rewarded by not doing dodgy stuff like spamming,
manipulating your users into doing stuff, growth hacking your search
rankings or faking your social media, or abusing your power to compete
unfairly if you're successful. If you make a good product, you don't need

/

any of this. If you make mistakes, own up to them and say sorry. Be nice
as a person and especially as a company. Karma always pays back in the
end. Just being ethical and nice is a competitive advantage these days
because most companies (and people) are not!

📝 Homework
Homework: Each chapter ends with homework exercises that you can
do. Instead of just reading, I'd like you to use this book as a handbook
while actually building and shipping a product. It doesn't matter if it
fails. But you need to do something instead of just read! This is not
startup porn! This is startup life.

/

📜 Foreword

/

Thank you

The last years were a whirlwind of adventures while building all these
products and being part of the startup ecosystem. I've met hundreds,
maybe thousands of people while doing this. Writing this book is my final
piece (for now 😛). And it wasn't possible without the help of a lot of
people.

I'd like to thank every person who ever used my apps and websites, espe-
cially those who supported me financially by becoming a paying customer.

I'd like to thank all my followers on Twitter for supporting my work by giv-
ing me feedback, sharing it, and sticking with me through my ups and
downs throughout this startup journey. Success sometimes makes you a
dick (especially on Twitter!), and maybe I wasn't nice sometimes. So please
forgive me and again, thank you.

I'd like to thank my family: my mom, my dad, and my brother Jeroen and
Marijn for sticking with me and giving me true advice in times where it was
hard to get objective feedback anywhere else.

I'd like to thank my girlfriend for repeatedly asking me "when are you going
to finish that f*cking book?" for 2 years, but mostly believing in me when
so many did not.

I'd like to thank my co-shipping friends: Marc from BetaList, Lowen, An-
drey, Oskar, John from Ghost, AJ from Carrd, Courtland from In-
diehackers, Daniel my Server Guy™, Xiufen Silver, Yury the Critic™,
Jelmer (aka Dutch Levels), Amrith (aka the Shinbag), Vlasti, Suska,
and Felix from Fastlane.

I'd also like to thank Patrick McKenzie (patio11), one of my biggest inspi-
rations to start building stuff when I was reading his blogs on Hacker News
years ago. Also Jon Yongfook who showed me you could build startups
while nomading and not look like a broke backpacker while doing it but in-

/

stead do it in style. And Derek Sivers who taught me to every day try to be
warm, nice and humble. No matter how much you achieve. And Anthony
from Hype Machine for always reaching out with advice.

I'd like to thank everyone in Work in Progress chat for keeping me pro-
ductive and forcing me to finally finish this book (which took me too long).

I'd like to thank Product Hunt, and specifically Ryan Hoover and Andreas
Klinger for always supporting me, giving great feedback and highlighting
my startups repeatedly. And in a bigger way for creating this whole indie
startup wave that I am benefiting from so much. It changed my life.

Why did I write a book?

I never wanted to write a book. I have to be honest to say I hardly read
books myself. I think it takes a certain amount of hubris to put your
thoughts in 200 pages and think you actually know something well enough
that you should share it with people. But then all of you started buying it,
so hey, let's do this!

I think it's stupid to read lots of books about doing something (in this case
startups) and then believe you're actually learning something from it. Be-
cause most successful people I know learned mostly everything they know
from practice. Just by doing things.

Books are also outdated by definition. The moment I write this sentence
and you read it (weeks, months or years later), I might have already
changed my mind.

Then there's the entire survivorship bias, it assumes that what worked for
me will work for you. But it probably won't. Because time has already
changed and I will never be able to put on to paper all the variables that
have attributed to things than went successful for me. I really don't like to
give people false promises. Which is what most other books do. No, this
book won't make you successful. That's all up to you.

/

But I do want to write a book

Even with all these things stacked against writing a book.

I want to write a book, if only because I see so much bullshit going around
in the world of startups and tech. The media is presenting startups in the
wrong way. People think they need to build billion dollar companies. They
need to fly to San Francisco and build a "network" and get $10 million dol-
lar investment from old rich guys. They need to hire 10x power developers
and work them for 100-hour work weeks while feeding them pizza and
soda. It will be great, they said.

But it won't. It'll probably suck. And you probably won't get rich. Because
the odds of a venture capital (VC) funded startup are by definition stacked
against you. Only 10% or less exit and that doesn't even tell you if the
founders make good money. There's giant company exits where the
founders barely made money. That's why I'm writing this. To show you, you
might be able to do it differently.

The indie way of building a startup

What's the alternative? How about this: do things yourself and build a nice
side project, that then can maybe turn into a bigger project, that then
maybe becomes a company that makes you enough money to quit your day
job and stop working for the man. Enough money to build up good savings,
that if you invest well, will give you a nice early retirement. Your own com-
pany that can give you a little more freedom in your daily life, so you can
spend it with friends, your family, your pets or just doing the things you
love. Which in the best case is actually building an app, project, startup or
company you love to work at/on/for!

I want to make bootstrapping great (again)
#MBGA

/

This way of building a company is called "bootstrapped". Which means
you're self-funded. You use the resources you have to get started. The odds
of building a successful bootstrapped business are way higher than build-
ing a venture funded billion dollar company. Because the goal of a boot-
strapped business is much more reachable. You don't need to do a billion
dollars in revenue. You're already there if you can pay yourself enough to
live from. Any money that comes extra is even better! You'll probably have
less stress, be happier and be therefore a better friend, lover, partner or
parent. Just....relax.

The coolest thing about bootstrapping it is that it doesn't exclude "going
big" later. Venture capital investors LOVE to invest in companies that al-
ready have proven revenue. And that's literally what a bootstrapped busi-
ness is. You'll be miles further than the person next to you pitching with
just a PowerPoint deck. When you go for millions of dollars of VC invest-
ment on day one, it means you do exclude building a healthy simple busi-
ness. Your company is now strapped to a rocket and you need to go big or
explode. That's why I think bootstrapping is the better way to build a busi-
ness now.

I really, truly, honestly want to see the mainstream startup narrative
change into one where bootstrapping, revenue and actual profit is "cool".
Writing a book on it with a proven framework people can apply, may help
accelerate this change.

There's a personal legacy aspect here: if I can have a small influence in
changing this, it feels good as a person. It's nice to change things for the
better. And if it doesn't, well, thousands of people paid me money for this
book, so it's a nice backup for me in case I go bankrupt.

Why should you listen to me?

Because I went from really scrappy side project to profitable company with
users a few times now. Most times it failed miserably, but a few times it
worked out for me.

/

At time of writing, my website Remote OK just became the most visited
remote jobs board in the world with 1 million monthly visits. Nomad List
is near that amount too, and ushered in a new era of digital nomads and re-
mote work from 2014 onward. They're both manually built by me, prof-
itable with high margins (up to 90%), and highly automated. I was Product
Hunt's Maker of the Year twice. I've launched my startups to Reddit's
front page twice. I grew my projects together into $83,000/month ($1M
ARR) while blogging and tweeting about all the personal ups and (lots of)
downs for the past years. Most of my other projects failed (some
miserably), but I was able to get an idea to success a few times.

There is a good chance that there is strong survivorship bias at work here
though. Remember that. The people who try and fail don't write books how
they failed. That means my entire perspective is probably biased and
skewed. You've been warned.

This book is my entire brain dump

I've been getting thousands of questions the last few years. I think if I
started answering them I'd simply not get to working on my own projects
anymore. That's why this book is the easiest knowledge transfer from me to
you.

Literally every single thing I learned in the last few years building boot-
strapped startups is in this book. It's my entire brain dumped on paper. It
can be messy but it's everything I know. I hope it'll be something like giving
back to the community and people will use it as guide in becoming indie
makers and ship products. I've seen the drafts of this book already applied
in hundreds of launched startups (because people will usually send me a
message), which is super awesome. I'd love to see more. Having some posi-
tive influence on people's lives is a lot more interesting to me than more
revenue, at this point.

This book is continuously updated

/

I'll be working on this book just like any of my startups. It's a continuous
project. I'll keep updating when I learn new things.

App, site, product, startup, business

You'll see these terms in the book used somewhat like synonyms. Because
most of the theory in this book applies to all of these. Sites these days are
like web apps, and apps are more like sites, together they are products and
a few of these products make up a startup which in turn is a business. Gen-
erally, they're all the same thing.

You'll need persistence, and luck

You may need to try shipping 10 to 30 products for 1 to 3 years before you
have anything that works. That's how this approach works. You build stuff
and see what sticks. I don't know anybody who shipped one product and
instantly became successful. It takes a long time to "get" it and even then
it's a lot of luck and timing. If something doesn't seem to take off early on,
it probably won't take off later, so make something new and try again.

As I, and this book practice radical honesty, there's a chance nothing you
make will be successful. But by doing you'll have figured something new
out, that might lead you to somewhere else, that will make you successful.
Startups, and life, are about constantly pivoting when things don't work
out. If you don't take action though, you can be sure nothing will ever hap-
pen. Stagnancy kills. So ship.

🚢 Always keep shipping.

Practice

I want you to learn from actually shipping a product. This book is just ideas
that might be wrong or right, and biased, but your own personal practical
experience will be the thing (if anything) making you successful. Not this

/

book! This book is just me pushing you to go sit on the bicycle. Now learn
to ride it yourself. Practice is everything. Get your own style. And most im-
portantly, ship.

/

📕 This
book

/

To avoid all those books with theories that are unproven, I felt on a
very meta level, I wanted to write this book with the theory described
in this book. To prove that if I could produce and sell this book in the
ways described in this book, it'd somewhat prove the theories might
work. So that's what I did.

Before even writing a single line on it I announced this book and opened it
up for pre-orders:

The landing page was literally a Typeform telling that I wanted to write a
book, but it didn't exist yet, and asking for $22.49 to support it.

/

The only thing people received after paying $22.49 immediately was an
empty Workflowy list where they could write what the book should be
about specifically. That gave me immediate feedback from customers what
they wanted me to make. Just like a startup.

Thousands of people pre-ordered the book (quickly netting $50,000+ in
revenue at $22.49 per pre-order) and there was thousands of items in the
Workflowy list to write about. I went through it regularly and tried to re-
order it to find patterns. I found I could divide up all questions people had
in the different stages of startups. Ideas, building, launching, growing and
monetizing. Everyone was at a different stage and needed different ques-
tions answered.

I then started writing the first chapter. I wanted to do this by "building in
public" too. Or in this case, writing in public. I made a Google Docs text
document and started writing.

/

But not before I started a live stream on Twitch of the writing process of
course. I wanted to live stream most of the chapters. It helped me because,
as you may know if you've ever written a book or thesis, the procrastination
of writing can become incredible.

Every time I finished the draft of a chapter I sent it out to all the pre-order
customers. And they could review it as a Google Doc again.

Only the final process of writing this book (where I'm at now), was done by
myself. Collecting all the content, cleaning it up, rewriting it and making
editorial decisions on what should be in it. But 90% of the process was out
in the open.

And that's exactly how I have built and would build startups: launch early
and build with/for your users.

/

/

💡 Idea

/

Introduction

This first chapter is about how to get ideas for a startup.

Solve your own problems

The most important thing is to find ideas from solving your own problems.
You do that by looking at your own life and observing what your daily chal-
lenges are. Then you see if you could make those challenges easier using
technology. If you solve your own problem, it's very realistic that there's
many more people like you who would also love their problem solved. And
that's pretty much what a business is. Solving lots of people's problems in
return for money.

In startups, this business can be in the form of an application, a website or
even only just a physical service tied together with some technology.

Your problem might just be everyone else's

My most successful project is Nomad List. It's a platform for remote work-
ers and travelers to find places to go to and meet other people when they're
there.

When I built the first version of Nomad List, I was traveling through Asia. I
was living in Chiang Mai, Bangkok, and Bali. I knew these places were good
for digital nomads, but I didn't know what other cities to visit. I'd go to Sin-
gapore, and discover it was nice but also very expensive. I'd go to Vietnam
and realize wow it's really cheap here, but the internet is unusably slow. I
was looking for cities that were cheap to live, had fast internet, and warm
temperatures. I thought "Okay, maybe just make a list of cities with that
data?". It was just a private spreadsheet first. I added about 25 cities' tem-
perature, internet speed and cost of living. Then I wanted to share it, I
tweeted the URL.

/

But something was off. When I looked back, someone had hacked my
spreadsheet. There were now about 75 cities and it wasn't just temperature,
internet speed and cost of living. There was safety, best coworking space
and climate added as columns. Instead of sharing it as "read-only", I had ac-
cidentally clicked "editable by everyone". Suddenly there were hundreds of
people adding data about their cities, and the cities they'd been to. After a
month, thousands of people had added data about over 250 cities.

This is a good example because I just wanted to solve my own problem, and
it turned out it was thousands of other people's problem too. Your own
problems are nice because often they're quite niche level, meaning you'll
have enough other people with the same problem to be your user, but not
enough that some giant company has already done it.

You are the greatest expert at your own
problems

Even if it's not always successful, the concept of solving your own problems
is a great way to find ideas that might be viable. A lot of people don't do
this. When you try to solve problems that aren't even yours, like somebody
else's, you can do that but you are not an expert in the problem area.

For example, I could make a health care app which registers patients and
their health situation, which diseases and ailments they have, and where
they are in the hospital system. But I'm not a doctor. I've only been to a
hospital when I was sick. I have zero expertise on health care. I don't know
the problems doctors have.

I can look at the entire industry from an outside perspective and think:
"Okay, we need to solve this problem. There's a lot of money and opportu-
nity here". But I still don't know anything about it. I'm just not an expert in
the problem space. And until I become a doctor, I probably will never be.

You want to find ideas from your own problems because you'll be an expert
on them immediately.

/

How well do you need to know a problem to
solve it?

Somebody asked me, "How well do I need to know a problem to make
something for it? How much can I learn along the way?".

I think you need to know a lot about the problem you're trying to solve.
Once you have traction and your website, app or startup works, you can
learn from user feedback and data you collect then. But that's useful once
you're already running. It won't help you find ideas that are suitable for you
to execute. First-hand experience with the problem you're solving is best.

And not just at the start. When your company grows, and you stop becom-
ing the target audience, you face a big risk of not understanding the cus-
tomer anymore. A good example is in hip-hop, a rapper comes from a low-
income ghetto, gets success rapping about that world, then gets rich from
the success, loses the inspiration of that world since he/she now lives in a
giant mansion and their career is over.

Personally, I saw this happen with myself. For awhile, I took a break from
traveling as a digital nomad and the product suffered. Now that I'm back on
the road, I see where my site sucks. For example, it doesn't work well when
I visited smaller towns where there's hardly any nomad activity. So I low-
ered the membership price of Nomad List and started focusing on just get-
ting more people in. As that's more important short-term than making
money. I wouldn't have realized this by staying home.

Problems are always changing, as are markets, as are people. If you are your
target market, that's perfect. You just evolve with it. The founder of Boost-
ed Boards, an electric skateboard, said:

"We just wanted to make skateboards for ourselves and there was no real
good electric ones. We built it for ourselves. We knew exactly how we want-
ed it to feel when driving. We knew what people wanted because we were
the target market".

/

I'm starting to repeat myself, but that's because this is a repetitive theme
with successful companies. And opposite: a repetitive theme with failing
companies is founders who have no connection to, expertise on or passion
for their industry.

Be more original, and your ideas will be original

There's an issue in itself with only solving your own problems. What if
you're not as unique as you think? It takes only a slight glimpse at current
startups ideas to see that everyone is making the same stuff.

Everybody's doing a to-do list app. Everybody's doing productivity apps. For
a decade, people have been making apps to find your friends on a map.
Everybody's doing some kind of photo sharing app. These are basic ideas
that everyone has. And they're too obvious.

Everybody's doing them because everybody has the same problems. So how
can you find problems that are actually unique and original? Well, become
more unique and original yourself. I would have never built Nomad List if I
didn't go traveling and working.

So, you need to do stuff that makes you explicitly very different. It will get
you more unique ideas. That's super cool, because now you have two great
attributes of an idea. It's not just unique, but it's also something you're an
expert at since you've done it yourself. Even if you launch and get competi-
tors later (like I did) because they see you're making money and it's a good
market, you'll still be in a better position than them because you're real.
You've done it. You're an expert in the problem you're solving.

I would be bad at making an app for doctors, but if I was a psychiatrist, I'd
probably be able make a very good app for psychiatrists, since I'd know all
about it. Part of the Lean Startup approach dictates "talk to customers to
find problems". That's nice and all, but then you're still working from an
outside perspective. I'd say, just focus on your own problems.

/

Also, stop reading books to develop yourself or get ideas. You won't get
them from there. Or if you do, there's lots of other people reading the same
book probably. Get ideas from your life experience. Get outside. Become
original. Do crazy stuff that you're scared off. Jump off cliffs (do it safely).
Ask people you like out. Walk into random office buildings. Jump fences.
Crash hotel pools. Whatever makes you different. Don't be so scared! Live.

The downside of solving only your own
problems

There's a strong and somewhat valid criticism on the philosophy of solving
only your own problems.

If you're a wealthy guy from a Western country, you're probably going to
solve problems that make your already pretty good life better. You're not
going to solve problems that women or people with other genders have, be-
cause you don't experience their problems. You're also probably not going
to a developing country and solve the problematic garbage situation there.
It's the privilege argument.

I get it. And I see the criticism there, but then, it's hard for anyone to solve
a problem outside the context of their own subculture, city, country, conti-
nent, region, income class and gender, because they're not experts on it.
And maybe that's not as bad as we think. If we can democratize access to
computers and the internet (as we're doing now), people anywhere can fo-
cus on solving THEIR own problems and reap the financial (and other) re-
wards from doing that. And isn't that much better than having a white guy
do that and reap the rewards?

Always start from the problem, not the
solution

A lot of companies start not from the problem but from the solution. This
is one of the biggest mistakes you can make. Technology needs to solve a

/

problem. If you make a solution for a problem that doesn't exist, it might
look sexy technologically, but it won't get users.

When new technology becomes available people want to use it to build
something. A great example is the endless amount of apps that have ap-
peared since smartphones got GPS chips a decade ago. The first thought is,
okay, let's use this to track each other. So you make a map with friends on it
and where they are. This has been tried over and over and it's still a pretty
terrible idea. I don't have a strong curiosity to know where my friends are
and I don't necessarily want them to know where I am (due to privacy). The
problem doesn't exist. When I meet up with friends, we simply say a place
we're meeting up and we can find each other.

Now a good example where this technology is used to solve a problem
would be Tinder. It does use your GPS location, to find people around you
to date. That works because you don't want to match with people on the
other side of the world. It solves a problem and the solution is enabled by
available technology. The problem should always be first, not the technolo-
gy, not the solution.

To get big, you have to start small

Niches are specific market segments that are shallow enough to easily ac-
cess, with not many players in there. Niches are a great start because
they're usually too small in economic value for big companies to attend to.
They're also the perfect size to market a new company towards.

Niches go against the ridiculous "go big or go home" attitude that the rise
of startups in mainstream media pushed from 2006 onward. But that atti-
tude isn't realistic. Because most big companies started very small. If you
start big from day one, it's the wrong way to go about it. People don't like
niches because they're too small for people's ego's.

But niches are much more profitable than you'd think. If you have "just"
1,000 people paying you $83.33/month, that's $1,000,000 in revenue in one

/

year!

How to make $1,000,000

Make
a

$5,000 product
for 200 people

Make
a

$2,000 product
for 500 people

Make
a

$1,000 product
for 1,000 people

Make
a $200 product for 5,000 people

Make
a $100 product for 10,000 people

Make
a $10 product for 100,000

people

This copy of MAKE Book is owned by:

Pierre Guilbaud

p.guilbaud@tbs-education.org

77.158.188.153

Last updated: 2020-12-19

/

How to make $1,000,000 w/
subscriptions

500 people pay you $167/month for 1
year

1,000 people pay
you

$83/month for 1
year

2,000 people pay
you

$42/month for 1
year

5,000 people pay
you

$17/month for 1
year

10,000 people pay
you $9/month for 1 year

Start with a micro niche

Let's say you want to make booking software for hairdressers. That could be
a niche. But how many hairdressers are there? Probably millions world-
wide. Why not go even more niche? Booking software for hairdressers that
focus on African hair. Now you're talking tens of thousands maybe. That's a
good start. Let's say you captured only 10% of those 10,000+ hairdressers
that focus on African hair, that could be 1,000 customers paying that
$83/month making you a million-dollar bootstrapped company!

From micro niche to multi-niche

/

If you're at a party and someone asks you what you do and you answer you
make booking software for African hairdressers, you might think it's too
basic, i.e. you're not "changing the world" with this. But you shouldn't. Be-
cause first of all, you're probably making good money off those 10,000 hair-
dressers paying $100/y (that's $1M/y in revenue already!). And if you've
validated your startup in that niche, you can expand to other niches. What
about Asian hair? White people hair? Step by step you move closer to the
entire booking for hairdressers market. Why do it step by step? Because you
can easily go smaller again if you fail. And try to expand in another direc-
tion. It's like a lightning shock in slow motion, it tries to find the path of
least resistance. Your company should be doing the same thing.

From multi-niche to vertical integration

Now let's say you have the entire booking for hairdressers market, what
about booking for nail salons? And tattoo shops? Oh now, you're doing
restaurants. Now what else do all the shops need? A point-of-service pay-
ment platform. Okay you have all these shops as customers already, so you
can easily sell this new service to them too (and best of all test is on them
first). This is vertical integration, you try to go into the businesses that
your current customers also use.

From vertical integration to becoming a
platform

With the experience from payments for physical shops, you move to virtual
payments too. With lots of luck, you'll be one of the biggest payment gate-
ways in the world. You'll go into ecommerce with virtual storefronts for the
physical shops of your customers.

You just became big by starting small!

See what happened here? You became big by starting small. Most people do
the opposite and crash and burn. They want to build that giant payment

/

platform that will change everything. But hardly anybody started with that.
Facebook was a Hot Or Not app by Marc Zuckerberg. Apple was a personal
computer build kit for amateur hackers. Microsoft was a tiny software
agency that re-sold MS-DOS from another developer to IBM. Google was a
small academic experiment to search Stanford University's local intranet.
Get it?

Stop. Thinking. Big.

Think small first! You'll be big at the end!

Your idea does not have to be earth-shattering

I don't think your idea should be earth- shattering. If you look at most big
startups, their first idea was not earth- shattering at all, most of them.
Think Uber. They started as an app where you can simply call a taxi. Right?
Then it grew into an entire transport solution. The long goal is self-driving
cars, that transport everything and to replace the entire transport and de-
livery industry.

All that started with a taxi hailing app. Your first idea does not have to be
(and probably should not be) earth-shattering.

You start with something small. Don't think too big. Then slowly, you can
get to the big part by extrapolating, scaling your idea to a bigger market,
from a niche market, and to a bigger more abstract idea.

With Nomad List, I started with a list of cities with cost of living and inter-
net speeds. Then I scaled that that up to a social platform for digital no-
mads. Now the long-term goal is an entire internet platform for the future
of remote work. That means more tools for nomads, remote workers and
businesses that embrace this future. That all started with a database of
cities, that's not earth-shattering at all.

The more I talk with people in the startup world and they tell me like, "This
idea is going to change the world. It's going to be a billion dollar company."

/

Those are usually the ones that fail really, really bad. The ones that go real-
ly well, and I know from seeing friends around me, are the ones that are
people are really modest and they just say, "Ah we just want to fix a small
thing. Then okay we fix it. Okay. What's next? What are we going to do
next." They do have probably a long-term vision, but focus on the small
stuff every step of the way because that's how you get big by focusing on
small steps. If you can't even do the small steps right, how are you going to
get to the big part? Right?

Don't focus on the idea that is earth-shattering. Just start with something
basic. Virtual reality is an industry that will be earth-shattering, but you
don't have to have an idea that's earth-shattering. You can start with a ba-
sic, little virtual reality game/app (like I'm doing now) and slowly add func-
tionality until maybe it becomes like the next virtual social reality world
where we're going to live our lives in.

You don't know what you're going to end up with. That's another point. You
need constant feedback from your users in the markets to see what people
want and what people use and whatnot. You can't just think of that. You
can't think big immediately. You have to start small.

Create a list of ideas and keep track of them

A good start if you're looking for ideas is to keep track of any you might get.
How you keep track of your ideas is up to you. I now use Workflowy and
previously used Trello for it. I have a few different lists. The first is for
"Concepts", that's rough ideas. Then if one of the ideas looks good, I move
it to the "Promising" list. If I actually start executing them I put them in the
"Building" list. Then if it's done I have a "Success" or "Failure" list. When it's
a failure, I usually also write inside the card why it failed in a post-mortem
that's one sentence long.

/

The first list of basic ideas has zero limits in how weird or crazy the ideas
can be. This is on purpose. There shouldn't be any judgment on your first
basic creative premise. It can evolve into something more practical later.

The thing with ideas is, at least with me, that they keep coming back in my
brain. I'll get a basic hunch, then weeks later it comes back, and then
months later it'll start to manifest in my mind. Then sometimes even 2
years later I'll finally start executing it. This is great because your mind is
like a rice cooker for ideas. They need to get ready before you can put them
out and build them.

This list of ideas doesn't have to be physical or virtual, it can also just be in
your mind if that works for you. As long as you keep going back to ideas
and see if they have evolved to become worthy of actual execution.

Should you make ideas alone or in a group?

I think collaborations can be very dangerous. Because if you work with
somebody else in a team, there's a big tendency of groupthink, where
everyone starts hyping each other on the value of the idea. The prototype
might only get mild validation from paying users, but you're working with
this group and you're already so crazy about it that it doesn't really matter
what users pay/do/say. That's very bad. It should only be about the users.

/

I've been in these rooms, I've seen it happen. "I"m telling you Joe, we've got
something really good here". No, we don't care. It should be only about cus-
tomers. You see a lot of startups go wrong because they have this group
think in the beginning and it's actually not rational thinking. You're more
rational on your own. Obviously, collaborations can work with idea genera-
tion too, but I think the most important part of idea generation is getting
ideas yourself, then talking to people, customers, users to evolve them. Not
talking to your teammates how great your team's idea is.

The worst is to be with people that just confirm what you already think.
The best is to test your ideas as quickly as possible. Even asking other peo-
ple for advice is kind of bullshit. You can't ask "will this idea work". You
need to ask the market by building it! Nobody knows until you launch!

Don't be afraid to share your ideas

The most elementary mistake people still make is not sharing their ideas.
No, people won't steal your idea if they like it. And even if they do, they
probably can't execute it as well as you. And even if they do, you're not a
snowflake! There's thousands or even millions of people with the same
ideas as you. Stop thinking you're so special! Ideas are a dime a dozen.
Everything is about how you execute.

/

Idea x Execution = Business

Bad
idea = 0

Good
idea = 10

Great
idea = 20

No
execution = $0

Good
execution = $100,000

Great
execution = $1,000,0000

"To me, ideas are worth nothing unless
executed. They are just a multiplier. Execution
is worth millions. To make a business, you
need to multiply the two. The most brilliant
idea, with no execution, is worth $20. The most
brilliant idea takes great execution to be worth
$20,000,000."

— Derek Sivers in his famous essay "Ideas are just a multiplier of execu-
tion" (2005)

/

You shouldn't be scared of sharing your idea because execution gives the
idea its details and specifics. That means 10 people with the same idea will
execute it in 10 completely different ways.

The benefit of being able to share your ideas is that you'll be discussing
them with everyone. Potential customers, vendors, suppliers, whoever.
Everyone will have some input on it which you may or may not use as feed-
back. Again, the market remains the most important feedback though.

Not sharing your idea is stupid because it'll stay only in your head. You for
sure won't be objective at judging it since you have something called "opti-
mism bias" which is "the tendency of individuals to underestimate the like-
lihood they will experience adverse events", e.g. you think it'll definitely be
very successful.

It doesn't matter if people say "that idea will never work" because they're
not the validation. The user paying/using it is the validation, not other
people judging your idea! The point of sharing your idea is thus not to get
people loving it or hating it. The point is that you get your brain working
outside of its comfort zone (of talking to itself) and you'll evolve your idea.
You'll come up with adaptations of your idea, or entirely new ideas by talk-
ing about it.

Conclusion

To get ideas, try to find problems in your daily life. You're the foremost ex-
pert at problems you have, more than anyone else who doesn't have them.
If you keep coming up with the same ideas as everyone else: try to make
yourself a more original person by actively experiencing different things.
Don't shy away from taboos and fringe ideas, that just mean you're ahead
of the curve, they might become the next big thing. Don't think big, start
thinking small first, then take it one step at a time, you'll become big by
starting small. To avoid groupthink and drama: work alone, especially early
on. Share your ideas freely to get other people's input on them. Log every
idea you have, filter them, and see which ones you can execute upon.

/

Resources mentioned

Workflowy

Trello

Stripe

Zapier

Intercom

Olark

Typeform

/

Your homework

Spend the next 7 days making a list of problems you
have in your daily life, they can be small or big, try to
find 3 ideas per day, so that you have at least 21 at the
end of this week.

/

🛠 Build

/

Introduction

You made it to the second chapter. We'll now discuss how to build
your idea.

In the previous chapter we looked at how to find ideas for your product. To
avoid getting stuck in an infinite loop of brainstorm and bullshit, you want
to start building as soon as possible. The faster you get it out, the faster
you'll see if people want to use it, how they use it and what other features
they want to see you build. Without shipping, it's difficult to get any idea of
what they want. There are obvious exceptions here: Apple hardly uses any
focus groups or user testing, they choose to ship the very best (according to
them). That's fine, but you're not Apple (yet).

Build fast and minimal

While a decade ago development time was long and took lots of planning
to get right, today we can go from idea to basic product in a matter of days.

We have cheap and easy to set up servers (virtual private servers or VPS,
like Linode and Digital Ocean), and platforms as a service (PaaS, like
Heroku) that take out all the difficulty of setting up your own server.
Server operating systems like Ubuntu have become relatively simple to set
up with tutorials readily being available online. The web server software
itself has become fast and simple too: NGINX allows us to set up a basic
default server that doesn't need much further configuration. Languages
like Ruby, JavaScript, PHP and their frameworks like Ruby on Rails, Meteor,
Laravel make it easy to build products by skipping the ground work.

/

It's fine if you don't recognize a lot of the terms
in the previous paragraph. This isn't a
technical book. And the tools with which you
make your product don't really matter in the
beginning (and not even that much later
either).

My point is, the speed of the development can be very fast now. And the
zeitgeist of our time is transient too. Everything moves fast now, and where
in the past people would use an app for days or weeks, now you literally
have seconds to make an impact, or they close/uninstall it. So you have to
move fast to stay ahead. Another attribute of our zeitgeist is minimalism.
Users finally accept minimal interfaces and minimal functionality, as long
as an app does what it says well. There are single-purpose apps now that
just do one small thing very well. Many of them have been quite successful.

Downsides of fast development

There are downsides to this culture of fast development. There are prod-
ucts these days which are still littered with bugs when shipped. They might
not work well on all mobile devices. They're not tested. There's products
that are launched and work great in the first week, but then their develop-
ers stop maintaining them and they break after a few months. The remain-
ing users get annoyed when the app stops working. With development be-
ing fast, rough and dirty, so are the results.

The other downside is you don't have the time for sophistication and de-
tails. Code has a higher potential to become an epic mess of spaghetti be-
cause there's less architectural planning involved. But then again, you can
always rewrite code right? At least you've shipped. Users don't care how
your code looks.

Your enemy is perfection

/

The reasons you should launch fast are to avoid inaction due to perfection.
You should start avoiding striving for perfection now and maybe later too.
This applies to all phases of doing a startup (and maybe even life), but es-
pecially the start. Perfectionism is detrimental because 9 out of 10 times it
doesn't make things better but just creates inaction. You'll have 50 meet-
ings, 100 iterations of an idea or feature, just to get it right, when actually
you should have just gotten it out of the door immediately and let people
use it (and learned from them using it!). Perfectionism is necessary in
smaller details of your service or startup, but not in the entire thing be-
cause then it will simply paralyze you with inaction and fear that what you
do is not perfect. Nothing is perfect at the start. Things become perfect
through lengthy iterations!

If you're in the early stages of a company, you want to get out stuff as fast
as possible. Actually, overall I think in the entire stage, it will be useful to
do that because users love new features. They love to test new stuff.
They're actually pretty okay getting into bugs. They know development is
difficult these days. I mean Gmail was in Beta for a decade. People are fine
with errors, as long as they can use something new and as long as the er-
rors get fixed, and if they have some way to tell you the feedback about the
errors, for example. I think getting stuff out the door is the number one
priority.

Avoiding perfectionism is a skill you have to develop. You need to learn to
be fine with everything being not fine. Not everything will be perfect and
high quality. Maybe your website will have the wrong images, the wrong
background colors and the logo color doesn't match the branding text in
the rest of the page. Is that important? Really? It's okay for a day. It needs
to be fixed at some point, but it's not a priority. The product works. Priori-
tize perfectionism. Perfect what needs to be perfected now. The stuff that's
low priority, don't put too much effort in it to perfect it.

You'll always have time to perfect stuff later. You can always iterate and de-
velop it to be great later. Why not perfect it step by step? Make small
improvements.

/

There's a limit to this though. Don't make shitty products. With minimum
viable products there's been a rise of people shipping products that look
bad and hardly work. A first prototype should function really well. It's fine
if there's some bugs on the side, but the core functionality should be opera-
tional. It should look at least OK, otherwise you simply turn people away.
Minimum needs to be minimum good.

How viable should a minimum viable product (MVP) be?

The bad MVP's we're seeing recently are creating a counter movement
against the lean product development trend. And that's understandable. A
lean or minimum viable product doesn't mean it can be shit! It has to actu-
ally function, users have to be able to use it. Bugs are fine, but users should
be able to report them instantly (like with a feedback chat box pop up).
You'll also have to fix bugs fast or people will get annoyed (and you'll just
grow more and more bugs). Making a minimum viable product means it has
to be viable, it's not an excuse to be lazy and make something half-assed.
So it's all about balance. Make something great that functions and it can be
minimal. But make sure it works!

Build yourself or outsource

Many people ask me if they should build their product themselves, out-
source it to other people or hire full-time employees to build it for them.

I have a pretty extreme opinion about this that goes against the grain of
what most say. But I think I'm right because times are changing.

DIY vs. people who hire others to do it for them

I think you can get quite far by letting other people develop your product
for you, but the problem is that in the long term you won't be able to have
the same speed as a product maker with development skills.

/

To give you an example: my day usually starts with waking up, showering,
having some coffee, seeing what bug on one of my sites is emailed/tweet-
ed/shared with me today (someone sends me a bug report almost every
day), and I'll see if I can fix it immediately. Then I'll see other stuff on my
site that I don't like, and I'll just change it on the fly. All of this usually
takes a few minutes. Those are just small tweaks every day, but over a year
that's like 300 to 1,000 small tweaks which add up.

Now imagine if you outsource all of this, and you have to ask 1,000 times
for a developer to tweak this and that. For me, a small tweak or bug fix will
take just a few minutes because I can do it myself. But for you, each tweak
takes a message to your developer, who then has to be working that day
(and awake!) to get it fixed. He might have to do a meeting about it with his
team. So it might take a few hours, or days, or weeks.

Now imagine if we have the same site and you and me are competing. In
the time you've sent a bunch of emails to your developers, I've already
pushed 5 bug fixes and added 2 new features to my app. Who's going to win
here? Who's faster? Not you!

Now think about your users. They're now stuck with a bug for 3 days be-
cause your developer is hiking up a mountain in Peru for holiday. I fixed
that bug while having my coffee in the morning in 5 minutes. What will
your users like more? Your broken app or my working one?

It's not all roses though. Doing everything yourself in the long-term proba-
bly doesn't work. If you've proven a business model, it's probably smart to
keep repeating it (by scaling it up), getting people to work FOR you, with
you managing the operations instead of micromanaging and fixing tiny
bugs. But that's not what this book is about. We're talking about the begin-
ning. In that case, DIY always tops outsourcing for me.

DIY vs. big teams with VC money

/

I've seen countless real life examples of VC-funded companies spending
loads on building giant development and design teams, or paying the same
money to outsourced development and design agencies. There's lots of ex-
ceptions were it went right, but mostly in the beginning this just slows you
down terribly.

There's been about 5 big direct Nomad List competitors come and go now
that have been VC-funded from 1 to 10 million dollars in funding with
teams from 10 to 30 people that made the same site as me. But they all
didn't go anywhere.

While working alone in my underwear on the side of my hotel bed
with my MacBook and my coffee, I was able to outcompete million-
dollar VC-funded teams of 30+ people in an office in San Francisco
with Aeron chairs, oakwood meeting desks, $20,000 espresso ma-
chines, bean bags and ping-pong tables.

That's a really cool thing about the time we live in. It's a pretty fair race.
You just need to make a better product than other people and it gets re-
warded by people using it.

When starting up, you don't need a team if you have the skills yourself. You
don't need startup capital if you have the skills yourself. And getting the
skills yourself isn't that hard if you can search every question on Google.
And in my opinion, having those skills sets you apart.

You don't even need to be great at it. I'm not great at programming or de-
sign. I'm pretty average. But because I can do it all well enough, I have an
advantage over many people, teams and companies who are specialized.

My gripe with venture capital in terms of building products

My social media outrage might make you think differently, but I don't hate
venture capital. It has its function and place. But I don't like to see (other
people's) money wasted on bullshit. And there's plenty of VC money fund-

/

ing bullshit. The costs of building a startup (especially, especially in the be-
ginning) are almost $0 now. That is, if you use your own current skills.

There's a problem with the current narrative for
how you're supposed to build a startup:

Get VC money from day one

Hire too many developers, designers

Rent an expensive office

Have your team build something

Buy an espresso machine

Do team-building retreats

Buy startup goodies like t-shirts and hats with your
logo

Get drunk in a jacuzzi to celebrate raising more
money

Oops, the product didn't get traction

Sorry VC, we shut it down

Bye money!

/

The more sustainable way to build a startup:

Build something yourself

See if it works

No, build something else

See if it works

No, build another thing

See if it works

It works!

Let's see if I can monetize it

I can hire some people now with the money I'm
making with it

Now I have a team of a few people

If we want, we can rent an office, or just save money
and stay remote

The business model seems to be proven because
every time I spend $1 more, I get $1.50 in revenue,
thus it's scalable.

This means, if I get more money, I can spend more
and get more profit theoretically

Maybe we can borrow or get some angel investor or
VC to fund our expansion in return for giving away
some of our ownership, or use our cash flow for it

/

We got more money now, we spend it on the right
things, and now we're making even more profit, it
worked!

Now the product is really cool, people love it, and
we're making lots of money, mission accomplished

Let's see if I can sell the product because I want to do
other stuff with my life (build a family, start a farm,
raise kids)

Okay, I sold it for $500,000 to $10,000,000, now I
have financial independence in return for a few years
of hard work and my investors are happy too!

This is relevant because venture capital money can destroy the build
process before it's even begun. If approached wrong, raising money means
you can skip the actual product validation (if people want the product) and
finding a business model (because you don't need money to survive, you
have funding). It lets people spend lots of money without having to see any
(positive) results for it for a long time. That causes people and companies
to be jaded. It's not natural for humans. The natural tension of having to
survive is healthy and it makes people act in superhuman ways.

There's always the story of the son or daughter of rich parents who could
never find a job until their parents cut all spending on them and suddenly
they found a job (because they HAD to get a job to survive). I think the
same applies to companies. If you don't need to find a business model (to
survive), you're not really going to prioritize looking for it either.

Bootstrapping vs. venture capital

/

Bootstrapping has become an advantage. You keep your costs low, natural-
ly. You get zero of the bullshit attached with VC money. You maintain full
ownership over your product and its roadmap (where you want to go with
it). You maintain full ownership over the equity so that when you sell it lat-
er, you'll get lots of money (instead of just a diluted 5% because VCs took
the rest).

And in our times you don't really need a lot of money to build something
yourself. A simple web server is $5/month. A code editor like Atom is free.
To make iOS apps, XCode is free. An Apple developer license is $100/year.
Not a lot compared to the money you can make back from it if you can get
people to use your product and pay you hard dollars for it.

Bootstrapping has become a very viable option for most software-based
startup ideas. Whereas, venture capital has become tedious to get (sched-
ule 6 months of meetings), limits your freedom (grow crazy big or die) and
not really necessary at all. Did I mention how much less stressful boot-
strapping is, yet? No, well it is!

The importance of keeping costs down

In the early stages of any project that's not funded, keeping your costs
down is your biggest priority. And if you use your own skills to make the
basics, that's a lot of costs saved. Developers these days are crazy expen-
sive, due to high demand for them. Most dev's go for $50 to $250/hour. Just
the MVP of any small app will already cost roughly 100 hours of work. So
there you go, that's $5,000 to $25,000. A fully functioning app will cost
thousands of hours, from $50,000 and up.

That's a lot of money if you don't have a lot of money.

So, if you have access to a big money pile, then why not, hire some people
to build it. But you'll still be competing with a lot of DIY-ers that don't have
that cost, and you'll want to get your costs back at some point in the form
of revenue. If your development costs are so much higher than the rest,

/

you'll also need to make a lot more money than the rest. Possible, but hard.
Especially in the beginning.

Now, the worst you can do is contact a developer and ask them to work for
free in return for a 50% share of profit, while you get the other 50% because
you came up with "the idea". It's become a startup trope and it's ridiculous.
The market value of an idea without execution is $0. So either you get
REAL skills (an MBA != skills), or get money to pay developers. Paying with
future equity is ridiculous, it's like paying with a $5 lottery ticket. Don't
make a joke out of yourself! Nobody works for free anymore. You have to
understand, as a developer you can now make $150,000/year as a starting
salary in San Francisco. Do you really think anyone cares about your start-
up idea of a random person such as yourself? Not unless you have some-
thing to bring to the table, like money or skills. Some people used to add
connections to that list, but I don't really believe networking is important
in this age anymore. What's important is the product and to make it you
need money or skills.

To build, should you learn to code?

Yes, I'd recommend you learn it. It's only getting easier now. Learning to
code seems steep for newbies. But people approach it wrong. You can prob-
ably ride a bicycle, right? When you started "learning to ride a bicycle" did
you think you'd be Lance Armstrong? No. And you probably aren't. You can
just ride it, but you're not competing in world championships.

It's the same with learning to code. It doesn't mean you have to be great, or
even good at it. Just know some bits so you can throw stuff together. When
I code, every day I have to Google how to do stuff I don't know. Coding is
continuous learning. You can ask any programmer and they'll answer the
same. The good thing is, there's so much information on the internet nowa-
days. Almost every problem you face, someone else probably had before
you.

/

If you're looking for ways to "learn to code", I'd say don't go for courses,
bootcamps or mentors. They usually cost a lot of money and they don't
teach you the core of coding: figuring it out yourself. That's the biggest
skill. Fiddling for hours to days to get something working. Not giving up
and keep trying. And then suddenly: EUREKA!

If you want to learn to code, my advice is: try to build your idea with HTML
and CSS and some JavaScript and see how far you get. Just Google every
single thing you don't know. Start with "how to make a HTML page". Then
"how to make text colored in HTML". Then "how to make a button in
HTML". Etc. Keep searching. You'd be surprised how far you get. This is how
I (and many others) have learnt to code. Figure it out for yourself.

If you really don't want to learn to code, read on as I'll discuss how to
build a basic app without a single line of code later in this chapter.

Tools

Which tools should you use to build?

I'm a strong believer that right now you should use whatever tool works
best for you. What tool do you already know? You've already worked with
Ruby once? Was it fun? Use that. You've already worked with PHP? Then
use that.

What you should definitely NOT do is listen to programming hipsters on
the internet telling you which language is best.

Here's a little secret: The people discussing what programming lan-
guage is best are not shipping products. The people who don't care
what programming language they're using are shipping products.
They'll use whatever tool they need, whenever they need it.

So use whatever is easiest for you to learn or work with. And then switch
whenever you feel you've outgrown a language. But honestly, unless you're
programming spaceships, it's pretty hard to outgrow a language. They're all

/

based on the same principles of computing. You can build anything with
most languages really.

Facebook was built on PHP

Twitter on Ruby

Google on Java

Reddit on Python

Hacker News on Arc

The thing is, you're not building for the enterprise here. You're building a
first product that might grow into something bigger and then turn into a
startup company. You can always switch. Twitter switched from Ruby to
Java after they kept going down. Twitter still exists. When Facebook be-
came popular, it became overloaded with users, so they wrote their own en-
gine (called HipHop) to speed up PHP. And they started writing critical
parts that needed more speed in other languages.

The point is, it didn't stop them from being successful, so surely it won't
matter for you.

What if you don't code? I'd recommend you to learn to code of course. But
for you, I've written entire part on how to build without code, further down
in this chapter.

My "light" stack

What I use personally grew out of my limitations. I wasn't educated in
Computer Science or even programming and I simply used what I knew a
little bit about. I didn't listen to everyone telling me what hip new frame-
work (anything.JS etc.) or language (Ruby etc.) to program. I knew some
PHP from making some WordPress sites before. And years before that I
making my websites interactive with Perl, and it looked pretty similar.

/

Now the point is, don't go learn PHP. But use what you already know and
see how far you get with it. And move to the next language or framework if
you're starting to reach its limitations (which seems very hard with most
modern languages).

The basic lite stack is a front-end (client) that is built with HTML, CSS and
JavaScript. You then use the JavaScript to communicate with the server by
making a web request. That request is received by your backend (server).
This backend can run anything. I use PHP, but nowadays you can also run
JavaScript on the server (with Express or Node.JS for example). You sepa-
rate the backend (server) from the front-end (client) for security reasons
because you don't want to let your entire user database be viewable by one
user, right? The backend code connects to your database (SQLite, MySQL or
PostgreSQL are great).

SQLite specifically is great because it doesn't require you to install a lot,
and when you make a database, it's just a file. It's very transportable. You
can literally copy the database file from and to your server. There's miscon-
ceptions about SQLite that it'd be slow or not scalable enough. That's bull-
shit. In many cases, SQLite is now faster than the filesystem (!) itself.

There's a giant trend now to merge the client and server-side programming
with frameworks like Meteor, React, Vue etc. And I support it. But at the
time of writing this book, it simply is too convoluted and complicated for
beginner programmers. It's a rabbit hole really. We don't know where it'll
go really: will we get more people using basic light stacks like this one
(which still separate front-end and backend) or will people all move to
frameworks like React.JS? Just because a technology is newer, doesn't mean
it's better though. My guess is we will probably merge front and back end at
some point. But at time of writing this book, things are changing too fast to
use it for me.

A good tip to choose a technology is its age. If a technology has been
around for a decade or more, it's probably working well for people. PHP is
over 2 decades old and JavaScript similar.

/

Does it matter what stack you use? Again, not really. Just use whatever
works for you. In my case, that's this light stack. I keep it simple. Most com-
panies will eventually built their own framework over time, and in a way
that's what I did. But it was never my plan. You just streamline functionali-
ty that you keep repeating. Remember, you can always switch the stack lat-
er. It'll hurt but it's completely possible.

Why are people so obsessed with tools?

There's a recent trend of people becoming viciously obsessed with dis-
cussing tooling. What language do you, should you and will you use? Why
all these tool discussions when it's not that important for shipping a prod-
uct? I think people are obsessed with tools because it feels like they're ac-
tually doing something productive. Because when they figure out what
tools they should use, they'll go learn that tool (or language) and build
their product right?

That's the idea, but it's stupid because it never happens. They get stuck in
this endless research. They'll learn a new language, then switch to the oth-
er one. Because this new language, tool or framework "may be a better fit"
for the product, that is the product they still have to build and ship. Not
any of these people ever finished what they wanted to make. And the prob-
lem is, every week a new framework shows up that promises to make your
app or its development even faster and easier.

All of this stuff simply takes away from your goal, which is shipping a prod-
uct and selling it to users and getting revenue from it. Who has this prob-
lem more than anybody? Software engineers. It helps to be a bit business-
ey here, because business people always care most about revenue. And if a
profitable company is your goal, you should too make that your first priori-
ty! Not the tools.

What about the people that finished and shipped? They mostly never cared
in the first place about tools. They weren't discussing which tool to use.
They just made something with whatever tool seemed good enough. And

/

they switched it whenever their tool limited them and they needed some-
thing else. They're "toolset ambiguous".

So, stop asking that question "what do you use to make that?" or "how did
you make that?". It's an inherently stupid question. The question should be
"why did you make that?". The philosophy behind something is way more
important than how they made it. You can copy their tools, but you'll never
be able to copy their WHY (which is what makes people and their products
great).

How do you evaluate if a new tool is useful for you?

There has never been a time during which there has been as much innova-
tion in programming languages as now (except in the post-war 20th centu-
ry with the rise of computing itself.)

The center of programming is on the web now. There's new languages pop-
ping up every month and new frameworks every week. This makes it hard
(especially for newbies) to judge what language or framework to invest
time in to learn. You learn a new language, but it might already be passé by
the time you finally understand it.

My approach is that I only learn what I directly need now. Let's say I'm
building a new app where I need to make beautiful charts in HTMl quickly.
I'll try it on my own first, but if it's too much work, I'll just Google "charts
in JavaScript":

/

I'll find D3.js, the dominant visualization framework for JavaScript and
learn some basic stuff to build a chart.

The thing is, I only learn what I need when I need it. Instead of spending
months on learning an ENTIRE language, framework or tool. I just learn
the bit that I need now. This is a much faster and leaner approach which
will save you time and make you more productive. And actually ship your
product.

I don't have so much of an inherent interest in programming that I'll go
and learn stuff just for fun. I know many people do. If your goal is to ship,
that might be a disadvantage, because you'll learn lots of stuff you don't
necessarily need. And you'll be playing around with tools more than you'll
be finishing your product.

Native vs. web

Web

A web app is a website that has the functionality that makes it an applica-
tion. It can look the same as a native app, except that you access it through
a web browser like Safari or Chrome (on your phone). You'll probably build
it with HTML, CSS and JavaScript.

Native

A native app means that you program it in the language native to the de-
vice you use. And it'll be an actual app installed on the device. For an
iPhone that means you'll build it for iOS and it'll use Objective-C or the
new simpler language Swift. That's usually what people mean when they
say "mobile apps".

User experience and development

In general, a native app's user experience feels faster than a web app. Al-
though with modern web apps you can get pretty close (it depends how

/

good you are at coding and optimizing it). In general, development of web
apps is faster, but the user experience is slower, whereas development of
mobile apps is slower, but the user experience is faster. A native app has
the disadvantage that users have to actually install your app. That takes
another user action. Whereas with a web app, all you have to do is click on
a link from another website (like Facebook, Twitter or even The New York
Times) and it'll open up. A web app is nothing more than just a sophisticat-
ed website that is made to look like an application.

Updating native apps vs. web apps

When you make a change to a native app, you need to deploy it to Apple
and Android's app stores. It needs to be reviewed by their staff and it might
take days before your update is pushed into the store and weeks until all
users download and update it. Instead, updating a web app literally means
uploading the new version to your server, and every user that loads it will
immediately load the new version. That means instant updates.

Hybrid web + native apps

There's famous hybrid apps that are half native and half website. Until re-
cently, Uber used to be a hybrid. This meant it could launch special features
on the map (like for Valentine's day, cars in the shape of hearts, as this was
just some HTML they changed), without having to deploy an update to the
app stores.

A more recent example of somewhat hybrid apps is React Native (which
probably is outdated by the time of reading this), which is a framework that
lets you write platform-independent code (for both iOS and Android) in a
HTML, CSS and JS-like style to make native apps.

What are people using most?

There's some data that suggests people on mobile devices spend more time
using native apps than web. That's probably true. But they'll spend it in
major apps like Facebook, Instagram, YouTube, Twitter, WhatsApp and

/

Messenger (remove from this list depending on whatever is popular in the
time of reading this book).

These are core apps though. They're giant. You probably won't be able (or
want) to compete with these apps. How about using them as your platform?

A future where your web app lives inside other native apps

What I mean sounds crazy but it's where I see this going. People will use
your web app INSIDE these apps. What happens if you send a link to some-
body on WhatsApp? They see a URL, they tap it, it opens INSIDE Whats-
App's web browser. It's a fully functional browser and your web app can run
inside it. A web container inside some big company's native app is the real
future platform for your web apps I think. Design for that use case. It's in-
trinsically viral as people will send your website's URL around and open it
from there. They won't have to install anything.

The web and native will merge in the future

I believe that web apps and mobile apps are converging. You see web apps
get more and more powerful and getting access to more functionality of
the device that was usually limited to mobile apps (for example the
iPhone's gyroscope is now accessible through web). Other examples are
how recently (2016), iPhone's browser doesn't show entire URLs anymore,
like "http://nomadlist.com/amsterdam-netherlands", but instead shows the
name of the site in the URL bar "nomadlist.com". That's obviously pointing
towards seeing the web more as apps. In the long term, there are a few ob-
stacles to overcome for the two to converge. Honestly though, it's impossi-
ble to predict. Five years ago, I would have thought by now everything
would be, but we still have users both on the web and inside native apps.

Learn both

If you have spare time, learn to do both web and native app development.
It's a remarkable (and sought after) skill to be able to build both web apps
and native apps. And of course, hybrid ones!

/

What are you able to build now?

This book is about getting something out as soon as possible. Therefore,
you should choose the platform where you already have some skills. This
way you can get something out as fast as possible. For most people, and
definitely for me, that'll always be web. Programming (and shipping) native
apps to mobile devices and getting them into app stores is more work than
just building a website, uploading it to a server and hooking it up to a do-
main name. Do what's fastest for you.

Other people will say I'm wrong there, and you should base it on how users
will use your app. That's a good point. But I don't want to see you get stuck
learning Objective-C and Swift to get an iPhone app out, or paying a mobile
developer $25,000 to build it for you.

Remember: you can ALWAYS go native later. If people use your site
already, you can bug them to install your native app later. This is an-
noying but it's possible. No platform choice has to be permanent.

Building with constraints

I'll now discuss how to build stuff if you're constrained. Having constraints
seem like a disadvantage but you can turn them in an advantage. So many
people look at the negatives in their current position, but in fact, most of
these can be considered a positive advantage.

No money/investment

As mentioned previously, bootstrapping has become an advantage. You
keep your costs low naturally. You get 0 of the bullshit attached with VC
money. You maintain full ownership over your product and its roadmap
(where you want to go with it). You maintain full ownership over the equity
so that when you sell it later, you'll get lots of money (instead of just a di-
luted 5% because VCs took the rest).

/

And in our times you don't really need a lot of money to build something
yourself. A simple web server is $5/m. A code editor like Sublime Text is
$60. To make iOS apps, XCode is free. A developer license with Apple is
$100/year. It's not a whole lot compared to the money you can make back
from it if you get people to use your app and pay for it.

Bootstrapping has become a very viable option for most software-based
startup ideas.

No office

I obviously had to put this in here as I'm a big supporter of remote work.
Not having to spend money on office rent is now an advantage. If you (and
the people you work with) can work from anywhere, it also means you now
have access to a worldwide pool of talent. Starting fully remote is much
easier than switching to remote after you already have an entire set of of-
fice buildings and workers.

No coding skills

Not being able to code means you can use off-the-shelf tools to quickly
prototype stuff without losing yourself in giant codebases. As you'll see lat-
er in this chapter, you can build an entire landing page, get data from users,
process that data, charge money without writing code. This means that you
can spin up lots of different MVPs and see which one sticks, without much
effort. Although you're more limited in what you can make, you'll be ship-
ping faster than people coding stuff for months.

Once one takes off, you can always learn to code on-the-fly, or get some-
one to help you build stuff out.

No connections

You're not a famous startup person with lots of connections in "the scene".
Well, guess what. Those connections are mostly bullshit any way. And if
you're "outside" the scene and not famous, it means you can act like an un-

/

derdog. You'll be more indie than most and, guess what, people LOVE to
support independent underdogs. You're fighting against big companies and
people want to see you win, that is, until you become a big company your-
self (the cycle of life). The "connections" people have after they get suc-
cessful also put them in a monoculture bubble, which you're not in (yet).
You think more freely and that's better for creativity.

Building a startup without coding

What if you really don't want to learn to code? That's what this part is
about. You can still do it. I'll show how you can build a basic prototype with
off-the-shelf tools. You'll be able to make a landing page, let users enter
data, manipulate and process it, charge them money, message them and
add a task for your contractor (or you) to execute, and without writing a
single line of code.

I'll discuss tools to use for each section and give some examples. These
tools are obviously subject to change and might be out-of-date. If they are,
the general concept remains. I'll give you some guidance. It's up to you to
connect everything and execute. Be creative!

Building a landing page

To get your users in you need a landing page. Luckily these days they're
easy to build with existing website builders that give you templates to
customize.

/

One of the most famous is Squarespace. A more recent indie website mak-
er is Carrd. Others are Tilda and Wix. If you need a bit more freedom and
the ability to add custom code later, try WordPress, it allows you to write
PHP or JS to customize your website and add features later on easily.

You'll want to use your landing page to explain your product or service.
And from there lead them towards a so-called call to action (or CTA). What
do you want from your users? Do you want to save their name and email?
Do you want them to pay you money? Adding a big colored button in the
center top of the page as a call-to-action will lead them click there. When
they click, link them to the next part (which in most cases means, collect-
ing data from your user).

Accepting user data entry

To get people to enter data, and then save it, you can use Typeform or
Google Forms. Typeform has better forms, but Google Forms lets you di-
rectly put the data in a Google spreadsheet, which is great.

Google Forms is a bit less intuitive and more formal:

/

Processing & manipulating user data

After you have the user's data, you probably want to do something with it.
Like save it, or process it and then save it, or process it and do something
with as a next step. Here's where Zapier comes in. It's magic.

Zapier is a web app that lets you connect most web apps you know with
others. It's like the glue in between. It can simply transfer data (or parts of
data) it gets, like from a Google Sheet, a received email or a Stripe transac-
tion, and send it to another service. Or it can process and change the data
in between, it even support basic JavaScript code:

/

You can make your own flows to do whatever you want them to do. And
they'll keep running perpetually. This is a lot like scheduled cron jobs you
have on the server, but again, without coding yourself.

There's lots of pre-made flows (so-called "zaps"). Like taking data from or
sending it to a Google Form:

Or taking the data from Typeform and sending it to Dropbox:

/

Contacting users

After you have processed the data, you might want to contact your users.
Luckily, Zapier supports MailChimp, which means you can now automati-
cally send emails:

Or you can just give a nod to MailChimp to do something. In turn, Mail-
Chimp has advanced built-in automation too:

That means anything you'd want to do after a user lands on your site and
enters data is possible. Like send them an email 14 days after with a link to
another web app. Or send them an automated PayPal invoice within an
hour of signing up.

It doesn't stop with email. You can send an SMS message or robot-voice
phone call to your user with the telephone API service Twilio. Then you
can even save what they respond on the phone. And in turn, send that to
another web app!

/

Making tasks for contractors

What if you need a human to process some data or work with a user? Send
it to productivity software Trello, where you add it as a to-do list item for
your contractor to execute:

Charging users payments

One of the most important parts is actually getting users to give you mon-
ey. Until recently, this was reserved to people who could code payment log-
ic together. Not anymore. Website builder Carrd supports Stripe
Checkout, which means you simply connect your Stripe account and you
can accept payments on your landing page.

Okay, let's try build something

To prove to you this works, I want to build an MVP for a startup that picks
up luggage anywhere in the world (where you are) and ships it to your des-
tination. This way, you don't have to go to the airport carrying all your bags

/

around. We won't write any code. Let's start making a landing in Carrd's
editor:

Here's how the final version looks:

Then when we make a new Typeform asking the user for their address, pick
up date and we embed this Typeform into Carrd:

/

The good thing about Typeform is it also supports Stripe. So we can also
charge the user's credit card from within (!) the form:

Now let's go into Zapier and make sure that after payment happens we do a
few things. This Zapier zap only runs if a new paid entry hits the Typeform.

We automatically send an email to the customer using Gmail with informa-
tion about the pickup:

We automatically add the pickup order to our Google Sheet with active
pickups:

/

We automatically add a task into Trello for our pick up contractor to get the
luggage:

We also automatically SMS our contractor an alert with Twilio that there's a
new pick up ready to be fulfilled, with the date and address:

See how easy that was? We now have a fully functioning minimum viable
product (and actually a basic startup) built. And it took about 30 minutes!
You can go a lot more complicated from here. The possibilities are endless.
And when you have validated your non-code MVP, you can start adding
your own coded parts too to increase the complexity of your product. You
can replace the "off-the-shelf" web apps with your own coded scripts.

Let's talk APIs

The entire previous section where we connected all these web apps without
code is only possible because of the existence of so-called APIs. They're
Application Program Interface. Which simply means apps that can commu-

/

nicate to each other in slightly human-readable data. Zapier's entire app is
build around connecting different APIs together.

You don't need to use Zapier to use APIs though. If you can code, you can
query APIs too and save their data, and in turn send it to other APIs.

One of the easiest ways to quickly build a prototype (if you can code) is to
use these third-party APIs. They can provide you with data (like cost of liv-
ing or weather data), platforms to build on (like Facebook and Twitter) and
services (like sending emails easily).

Why are they useful?

APIs are ways that computers and servers can share data in a computer
readable format. It means that when I open https://nomadlist.com/amster-
dam-netherlands a computer will literally read this:

/

<!doctype html><html class="nomadlist no-
js pageType-cities user units-metric ">
<head><!--<script type="text/javascript"
src="https://www.google.com/jsapi">
</script>--><meta charset="UTF-8" />
<title>Nomad List - The Best Cities to
Live and Work Remotely</title><script
src="//use.typekit.net/zfz4znf.js">
</script>
<script>try{Typekit.load();}catch(e){}
</script><meta http-equiv="Content-
Language" content="en-us" /><meta
name="google" value="notranslate" /><meta
name="viewport" content="width=device-
width, initial-scale=1.0, maximum-
scale=1.0, user-scalable=no"><meta http-
equiv="X-UA-Compatible"
content="IE=edge,chrome=1" /><meta
name="apple-mobile-web-app-capable"
content="yes" /><meta name="apple-mobile-
web-app-status-bar-style" content="black"
/><meta http-equiv="cleartype"
content="on" /><meta
name="HandheldFriendly" content="true" />
<meta name="description" content="The best
cities to live and work remotely for
digital nomads, based on cost of living,
internet speed, weather and other metrics.
For startups that work remotely and
digital nomads." />

....etcetera (it goes on for pages). This stuff is nice to look at when the com-
puter visualizes it and interprets the HTML code. But it's hard for the com-

/

puter to get specific data from it. Because the layout is kinda made for
humans.

But now, if I open the same page through an API at
https://nomadlist.com/api/v2/amsterdam-netherlands (this URL will prob-
ably not work anymore when you read this book but you get the point), you
and I, and even a computer, will be able to read this:

 {
 "name":"Amsterdam",
 "country":"The Netherlands",
 "cost_of_living":"$2,500/m",
 "safety_score":4.3891,
 "nomad_score":4.2183,
 "fun_score":3.394,
 "cost_score":2.238
 }

Now you can get the city name Amsterdam, the country The Netherlands
and how fun it is there 3.394 (out of 5 stars) and display it on your own site.
That's useful. But even more useful is if you combine multiple APIs
together.

What if I want to find the most fun places from Nomad List, and get the live
weather data from somewhere else? To see where it's fun and not raining?

Well, just a quick Google for "weather api" reveals there's a free weather API
called OpenWeatherMap.org which can give you the current weather and
forecast in a computer readable format, just like above. Let's try it:
http://api.openweathermap.org/data/2.5/weather?q=Amsterdam

/

{
 "name":"Amsterdam",
 "coord":
 {
 "lon":53,
 "lat":4
 },
 "weather":
 [
 {
 "main":"sunny",
 "description":"clear sky
 }
],
 "main":
 {
 "temp_celsius":25.5,
 "humidity":89,
 "pressure":1013,
 "temp_min":20.04,
 "temp_max":26.04
 },
 "rain":
 {
 "3h":0
 },
 "clouds":
 {
 "all":5
 },
 }

/

Yay, it's not raining in Amsterdam! And it's actually 25 degrees Celsius!
That means we can go outside and have some drinks :)

Now we can combine that weather API data, with the data from the Nomad
List API and show it on our site. But we can go much much further.

With API services like Twilio.com, we can make an entire telephone voice
and SMS service by just making calls to their API. I'll spare you the techni-
cal details as it's quite some work. But it's not difficult. It's simple and any-
one can set it up.

Now start thinking of ideas. You can have a phone number you call that'll
ask you some questions over voice, and even have the person answer them
(yes Twilio has Speech-To-Text and Text-To-Speech). You can call that
number to ask what's the city you should go now with the best weather and
most fun.

The more APIs you start combining, the more fun it becomes. And because
the heavy load is lifted by the APIs already, you are pretty much just con-
necting them together into new functionality. Which can be your product!

You can build a business on other people's API's

You can build entire businesses based on other company's API's. Many have
done so before you. There's one big thing to remember though: if you be-
come solely dependent on one company's API, you're in a bad place. With-
out even telling or asking you, they can shut down their API at any time.
And that will immediately destroy your business.

More commonly, companies change how their APIs function whenever they
want. That means you have to constantly monitor their API and see if it
functions correctly. Whenever they change something (even something as
small as changing the key of "nomad_cost" to "nomadcost"), it will break
your app and you have to change your code.

Conclusion

/

When building, try to build fast and minimal. Instead of learning new stuff,
use the tools you already know to build your idea. Make sure your MVP ac-
tually works and is not just a landing page that doesn't do anything. Lose
your perfectionism, it'll never be perfect any way. Don't outsource, build it
yourself. If you can't code, use off-the-shelf tools and connect APIs togeth-
er to build it. Appreciate your constraints and limitations, they can be a gi-
ant advantage vs. people with lots of resources. Keep your costs low while
building and later on. Build for the web first, you can go native mobile later.
Don't build on an MVP too long, a good rule of thumb is to spend max. one
month on it and launch.

/

Resources mentioned

Linode

Digital Ocean

Heroku

Ubuntu

NGINX

Olark

Twilio

Zapier

WordPress.com

/

Your homework

Rank the list of ideas you made previously by which you
think are best.

Now see which of those best ideas you can execute
quickest with the tools and skillset you already have
right now — that means without learning anything else
now.

Build the first prototype of your idea, it's minimal, but
that doesn't mean not functional. It should do
something, either it being a Typeform connected to
Zapier or a WordPress landing page or your self-
programmed web app or native app. It should have the
core functionality working well to be useful for users.

/

🚀 Launch

/

Introduction

Congrats! You've built something. Now for the most important step,
launching it to your future users.

What is a launch?

Many people have talked about it. Some have tried. Yet few have succeeded.
It's the launch of your app. After getting your idea and putting all your ef-
fort into building it. This is the day.

You show your product to the world in the hope of getting people to use it
(and pay for it).

But most people are overconfident. They think it's easy. It is relatively easy
if you have a great product. But even then, a wrong launch can mean failure
on day one.

That's why the launch is probably one of the most important parts of doing
a startup.

In effect, what it means is getting your app in the hands of people so they
start using it. And there are lots of ways to go about it. You can get people
to know about your app through existing platforms like Product Hunt,
Hacker News or Reddit. You can do outreach to press, so they'll write about
it. You can try to get people with a big audience to use it.

There are many ways, and we'll discuss most of them in this chapter.

Why even launch?

The idea of having a first launch is to make a big splash, get lots of people
to use your app, learn from their usage, fixing bugs, developing new fea-
tures, and hopefully getting them engaged so they stick around. You want

/

to bring lots of people in quickly, so that the app becomes active and so
people start talking about it.

It's also a great press opportunity, a launch itself means you can get press
from it. Even if it just means making your app publicly accessible by de-
ploying it. If you don't launch it, nobody is going to show up and use it.

Launches can and mostly are arbitrary these days. With continuous devel-
opment, you kinda launch every few hours, right? But you need to pick a
certain day and time to make this into an event. Let's say you have lots of
new updates and you feel like now it's almost like a new product. Then you
can launch it and tell the world.

How fast should you launch?

In most cases, you should launch as fast as possible. Because you want to
have people using it. Why? Because then you can figure out if they use it,
how they're using it and if they don't, why not? You can find bugs you
haven't found yourself. And you can get direct feedback from users to im-
prove it.

Preparing your app for a launch

One of the most important things to do before launching is seeing if what
you made is actually launch-ready.

Many people have the wrong idea about the term minimum viable product
(or MVP). You can't just throw something together and call it an MVP and
put it up. It needs to actually work.

An email sign up box is not a product, it's an email sign up box. Don't
launch it. That's ridiculous. I see it too much and it's completely useless.

So make sure it has a function. It does something well.

Fix most bugs

/

Then make sure that most bugs are gone. Go through the flow of what a
new user will go through many times. Act like different users. If you send
out emails after a user signs up, see if they actually get it. Go through that
flow countless times, until you're sure it actually works.

If you think all bugs are gone, make sure you get a few more people to
check it out. It's easy to miss things because you're so deep in your own
app's development.

Add an email box

One of the smartest things Product Hunt did, and many copied, was to add
an email sign up box at the top of their page. They've since changed it. But
it was smart as it gave them the ability to re-engage users.

So how should it look? Adding just "subscribe to my newsletter" sucks! It
doesn't show people value. The last thing I want if I go to your site is to
subscribe to another newsletter. Instead, give me something useful and
customized:

For example, if you have a jobs board and I'm browsing the PHP jobs:

That's actually useful to me. Instead of thinking about how useful getting
their email address is to you, think about what would be useful to a new
user so that you can capture their email address.

What if you have a food delivery service (now that's a startup idea nobody's
done yet, /sarcasm!):

You can set up a free MailChimp account and start capturing addresses
with their standard form. You can also add custom fields (like their city), so

/

that you can email them later depending on their city (that's called seg-
menting).

Doing this is important as it gives you the ability to capture the audience
that comes to your site on the day of your launch. And then get (some of)
them to come back in a few weeks. This is so critical, because most sites see
a giant drop of traffic after their launch ends. And that literally means,
you've now got a app that nobody uses.

Add push notifications

This applies just as much to a native app as a web app. With a native app
you have even more options though. You have push notifications which if
you don't abuse them are incredibly valuable. You can literally push your-
self to a user's most intimate device (their smartphone), straight on to their
home screen.

Be extremely modest with push notifications though. If you overuse them,
and they're not relevant, people will disable them.

To use my earlier example of the PHP jobs app, if I sign up to be notified
about PHP jobs then you should send me a notification if there's a particu-
larly good PHP job available or if there are X amount of PHP jobs available
that you can show me grouped together each week. That way, you give me
something useful and you're not spamming me.

Set up analytics

Something so common, but yet so many people forget, is setting up proper
analytics.

The most easy and common platform is Google Analytics and it's good
enough in most cases. Just embed their code. If your app is native, Google
also offers a solution for that.

/

The most basic things that you want to see are how many people are using
your app during launch (Google shows you that with their real-time tab),
where they are coming from (referrers), and their flow inside your app.

A good alternative is MixPanel, which lets you tie specific events (like
when somebody taps a button) to your analytics. That means you can track
more specifically what people are doing in your app. The problem is Mix-
Panel is crazy expensive. A cheaper solution is Amplitude, which does ex-
actly the same and in most cases is free.

All three of these work with native apps too.

Another cool analytics app is called HotJar (https://hotjar.com). The ethics
of this app might be questionable, as it lets you stream exactly what your
users see. Especially in the early stages of your app, this is incredibly use-
ful. You'll see exactly what people do, when they leave your page and some-
times even when they're confused and are randomly scrolling around your
site.

Feedback box

This is super important and I rarely see people implement them. Set up a
little feedback pop up in the bottom left or bottom right of your app. Espe-
cially when your app is very new, it's like a super power to your app's devel-
opment to get direct user feedback.

/

There's many sites offering this. I used to use a free version of Olark, but
their interface is getting extremely old. But the concept remains good.

A better option (but not free) is Intercom, which is quickly becoming the
default for interaction with users on websites. They offer many products
but one of them adds a little chat box on the bottom right of your app,
where you can chat with users directly. And if you're not there, people can
leave a message.

I don't suggest being on-call at all. I'd suggest using it just so users can
leave a message. The messages you'll get vary. I get a lot of very fun ones.
Mostly it's people thanking for making a website and that I should add a
new feature. Because they enter their email address, I am usually able to
reply quickly. ANd many of these feedback messages turn into entire email
threads full of feature discussions with random people from the internet!
It's pretty amazing.

It's also very useful if you break something. I accidentally break my sites A
LOT and many times the moment after I deploy the new version with a bug,
I'll get a message within 10 minutes through my feedback box that I broke
something. I wouldn't even know what to do if I didn't have that. It's be-
come essential to my workflow even with startups I have running for years
already. Things break, and you can't always test for them, so let your users
be your 24/7 continuous testing army!

/

Where to launch?

Typical places to launch a startup

Traditionally, startups have launched in the tech subculture first. That
works because tech people are early adopters and open to use new apps.
They also care less about bugs than mainstream people will.

Platforms like Product Hunt, Hacker News and even Reddit are geeky but
reach a huge mass of people. They're the most obvious places to launch
new startups, products and apps.

Should you launch there though?

Many people say you should launch where your customers are. And that's a
great point. If you make a food delivery service for pets. Are your then cus-
tomers really on Hacker News? Or Product Hunt? Or Reddit? I guess, they
could be on all of those. But it'd be probably smart to find an place where
pet owners hang out. That could mean advertising on Facebook targeting
pet owners, or reaching out to online forums for pets. I have no idea. The
point is, in that case you should target your audience specifically.

So there's a big argument to be made to not launch in the tech subculture.
But then more recently this is changing though. Now that the whole word
is starting to get smartphones, it seems tech has become mainstream.
Everybody is obsessed with apps and startups. And in that sense, those
startup platforms are actually a great place to launch. It really depends how
you look at it.

Launching on Product Hunt

Product Hunt was founded in 2014 by Ryan Hoover as an email newsletter
and has since become one of the most important platforms to launch a
startup. Product Hunt is a daily leaderboard (kinda like Reddit) where peo-
ple can submit and upvote new startups. In 2014, Product Hunt single-
handedly instigated an entirely new cultural wave of indie makers, a wave

/

of which I'm thankfully a part of. By letting anyone submit their app, it lets
indie makers compete with giant VC- backed startups for attention.

It has a community of people that are startup fans, app makers and mostly
just people curious to see the next big thing. There's a lot of early adopters
that are literally on the site to discover and try new apps.

In general, being on top of Product Hunt will get you around 10,000 people
visiting your site, with around 300 simultaneous users, with a percentage of
those signing up. Product Hunt traffic may convert less to paid users than
normal traffic that arrives on your site by search. That's logical, because
those users have a set goal. Instead, Product Hunt users are curious and
mostly just visit to "take a peek".

Product Hunt's comments on products are generally very supportive and
positive. But they're not radically honest (and painful) like Hacker News.
You have to take them with a grain of salt.

The most important selling point of Product Hunt for me is that it's packed
with tech journalists trying to find their next story. Usually what happens
just hours or a few days after a Product Hunt launch is that you'll see your
app show up in articles in the tech press all around the world. That alone is
a great thing and probably gets you another 50,000 people to visit it over
the next few weeks, depending on the media outlet.

Submitting to Product Hunt

/

You only have one opportunity to submit to Product Hunt in a long time
(you can't just keep submitting obviously). Therefore, you have to make
sure you do things the right way. I've seen too many startups work for
months on their product, to then absolutely fail at launching on Product
Hunt by underestimating how hard it is.

The timing of a launch on Product Hunt is quite important. Product Hunt's
timezone is San Francisco (PST timezone) and its ranking resets at mid-
night. That means you will need to launch at 00:00:01 or not much later. If
you submit at 9pm PST when there's 3 hours left to vote, Product Hunt will
take that into account somehow with their vote algorithm, but it still sim-
ply puts you at a disadvantage. Most people know by now to launch at mid-
night PST, so you won't be the only ones up there then. Due to time zones,
I've had to stay up or wake up early several times just to submit to Product
Hunt at the right time in PST.

Set a proper name. If it's the first launch on Product Hunt, just use your
app's name. If you already launched (like a year ago) and this is a big new
version, use 2.0 or 3.0 etc. Be sure to inform Product Hunt's community
managers about this, because sometimes they don't allow you to repost the
same product.

The tagline is like a motto or slogan. Make sure you put some thought in to
this. The most common problem with bad taglines is that they're too com-

/

plex to understand for non-users of your product. What does your app do?
It uses machine learning to make your photos better?

I see many people For example "An algorithmic application for machine
learning applied to photos" may be accurate but is terrible for Product
Hunt. Is it the first app to do this? Okay, so what about "The first machine
learning photo editor". Then add some emojis: "The first 🤖machine learn-
ing 📷photo editor".

The thumbnail is as important. Product Hunt allows you to upload animat-
ed GIFs. This means you can even convert a video to a GIF (as a square box)
and use that. Be sure it's only a few MB. A good app to capture videos to
GIF I use is GIPHY Capture.

Make about 8 to 16 high-res screenshots of your app. Zoom in the browser
on your website to make sure the screenshots are crisp. They're displayed
scaled down on Product Hunt so it makes sense to zoom in a bit.

Show the core functionalities of your app in the screenshots. Make it eye
catching.

/

Product Hunt also allows you to add a video now. It's auto played (with
muted audio) when your product page is opened on desktop. This is a great
opportunity to make a short thematic promo or explainer video. Make it 30
seconds or shorter, because people don't have much time. Capture people's
attention quickly and make sure the video gets across what your app is
about.

When it's up there

I usually send out a tweet on Twitter, share it on Facebook and Instagram
showing people that my new app is on Product Hunt. I explicitly do not ask
them to upvote it. But they might do if they like it. And that helps getting
up in the ranking.

If you have an email list, you can even send a message to them to tell
you're on Product Hunt. Again, don't ask people to upvote. They'll do it if
they like it anyway.

I'll also immediately jump in to the Product Hunt comments and write an
introduction post about who I am, why I made this app and what's my fu-
ture plan with it:

I then stick around in the comment section to keep answering any ques-
tions people have. And see if people have feature suggestions.

/

It's important to be polite and humble when you're in the comments sec-
tion. I see a lot of people pose, brag and market themselves when they're up
there. And people don't like it. It looks sleazy. You're there to take people in
as guests into your app and treat them well and hear their feedback and
improve based on that. Not to sell!

Different platforms have different degrees of hate. Product Hunt is famous
as one of the more positive platforms to launch apps on as it's fiercely cu-
rated. That might mean you'll get nicer people but less real feedback than
e.g. Hacker News.

Launching on Hacker News

Hacker News is probably the hard "core" of the tech and startup scene.

Just like Product Hunt, it's a leaderboard. But it doesn't just contain star-
tups. It also has blog posts about new technology, startups, funding rounds
and venture capital.

Hacker News is open to anyone's submissions, but that makes it extremely
competitive though. It also has lots of protections against spam, marketing,
voting rings and even controversy. For example, if a post receives more
comments than upvotes, it will quickly be flagged (automatically) and dis-
appear from the front page, that's the controversy filter at work. If Hacker
News detects you're forwarding your post to your friends to upvote, it'll
discount its votes and it'll just drop it to a few pages further. Therefore, it
takes quite some work and luck to get on Hacker News' frontpage.

Where Getting on Hacker News is already hard, staying there is a war in it-
self. Hacker News has aggressive moderating, which means if a mod doesn't
like your post, it'll simply discount the upvotes too and it'll fall off the
frontpage. The whole goal of HN is to keep the content very specifically rel-
evant to its audience and the current zeitgeist. You need to consider that.
Many makers make things specifically for the Hacker News zeitgeist. For
example, now that I'm writing this, there's a lot of pushback about Face-
book's ruining of society and addicting its users to newsfeeds. Making an

/

app around this that solves this will probably get high on Hacker News (if
someone else didn't already)≥

As with Product Hunt, the title is very important here. Let's say we're mak-
ing that food delivery app for pets. We call it Petsy.com. We submit it to HN
like this:

Petsy.com - The best food delivery for pets

It might work. But I think it probably won't.

A better way is to make it personal like:

I made a site that lets you subscribe to food
delivery for your pet

It's less marketing-y, and HN people will like it better.

An even better option is to use Hacker News's show-and-tell tab called
"Show HN", like this:

Show HN: I made a site that lets you subscribe
to pet food delivery

This might have a good chance to stay on top. Because it's real, friendly,
and authentic.

Now that you have submitted it, you need to give it a slight boost. This
should be very slight though, because if you get too many people to upvote
it too fast, it will be quickly be flagged as spam.

Your submission will be on the new page. It will be on there for about an
hour. Getting 5 people spread over the first hour to upvote it, will usually

/

already get it to the frontpage. From there, stay off it and just let the or-
ganic reach of being on the front page do its work.

Now if it doesn't go up more, it means Hacker News is probably just not in-
terested in it. Right now. Luckily, Hacker News recently allows re-submis-
sions. That means you can always try it again in a week. Try a different day.
Or a different time. With a different title. Maybe a different landing page.
But usually if it doesn't work the first time, it's simply not for Hacker News.

Be mindful that Hacker News is notoriously hateful. They can destroy your
entire company verbally in the comment section. But they're also one of
the most honest places on the internet. They regularly predict the downfall
of huge companies years in advance because they see through the PR bull-
shit (like they did predicting the fall of Groupon). That means they'll see
through your bullshit too. And many times they're right.

And many times they're wrong too. When Dropbox was posted by Drew
Houston for the first time, it wasn't taken seriously by most of HN. It
turned out to become a billion-dollar company.

Generally, Hacker News can get you around 50,000 to 100,000 visitors, and
1,000 simultaneous real-time visitors. That's about 5x to 10x as big as
Product Hunt, so make sure your server can handle it.

/

Launching on Reddit

Reddit is cool because it's geeky but it has a big overlap with the
mainstream.

Reddit is more mainstream. It's also a hive mind. That means if a few peo-
ple hate it, everyone quickly jumps on and follows. But if some love it, it'll
be the best site in the world for a day. According to them.

Nomad List was on the first page of Reddit (!) but was destroyed in the
comments, as people doubted the validity of its data. This had to do with a
subjective interpretation of what cost of living is and as it varied so much
per person, it wasn't right for anybody. Still it went to the front page!

Hoodmaps also got to Reddit's front page, and people where a lot more
positive. There was some hate about the socially sensitive nature of the
site. But I resolved that by banning any sensitive words from appearing on
the site.

Most sites can't take Reddit's traffic

The secret of getting on the front page of Reddit is to make sure your
server can handle Reddit's insane traffic.

There's a reason most of Reddit's front page is image memes from IMGUR.
Because most servers crash before they even reach the frontpage. If you're
on the front page, you get from 50,000 to 500,000 visitors and 5,000 to
25,000 simultaneous users. That's gigantic amounts of traffic! To compare:
Nomad List might get 50 simultaneous users at any point of they day.

My server crashed when it was on page 2, then I asked my friend @aikede-
jongste to jump on Skype and help me in the middle of the night. He logged
into my server and together we optimized it to handle the traffic. TL;DR we
made all dynamic (PHP-run) pages into static HTML files and as it was run-
ning on NGINX server, it went fine. With 5,000 people on there, it was us-
able. A small miracle. You can always make your site dynamic again when
the traffic goes down. But static is definitely the way to prepare for this.

/

A quick and dirty way to make your dynamic pages static is to make a
scheduled server job that does something like this:

php index.php > index.html

If you're using PHP, this works. But you can probably do it with other lan-
guages too. Just make sure the index.html shows up on your site if people
load it and not the PHP file. It dramatically reduces load as now it's not a
program operation but just a file read operation for your server!

Now you're saying, what if my app is dynamic (which it usually is). Well, in
case of Nomad List, the filtering of cities is dynamic. But that's just one
AJAX call to a very light API server script. You need way less power to let
your server respond to API calls than to generate an entire webpage. So you
can keep that API running, just make the main page static.

You need to remember, most people bounce from your site anyway if you're
on Reddit. About 20% will actually use it. That's why reducing the load of
the initial page is important.

Pick the right subreddit

When submitting to Reddit, you need to pick a subreddit.

It's probably best to first submit it a subreddit that is particularly relevant
the product you're launching. In my case, I'm building a food delivery app

/

for pets, so I could go with:

reddit.com/r/pets

Again, the title is very important:

Hi /r/pets! I made a site that lets you subscribe
to food delivery for your pet

This is a good way to get quick traction and see what people in your specif-
ic niche (pets) think about it.

A more general one to get quick feedback about your startup is:

reddit.com/r/startups

How to get on the front page

Now here's what you've all been waiting for. How do you get on the front
page?

Reddit's front page used to be based on a selection of subreddits that
change regularly. But since 2016, all non-adult subreddits are included.
Still, this means if your submission goes to the top of a high traffic subred-
dit, you have a good chance it will be in the top 100 posts of the entirety of
Reddit too.

If you reach the top 100 of posts, you'll be somewhere on page 4 of the
frontpage. Here's where the real battle starts. You now have to climb from
page 4 to page 1. Again, most sites fail here because they start going down
because of the traffic already coming in now being too much. If you don't
go down, it's now really about the collective "hivemind" of Reddit and if
they like it or not. The scale of Reddit is so big if you're in the top 100, that

/

it means you can't really affect it any longer from here. If it's great, it'll
slowly get pushed to the frontpage. This might take a few hours, and more
probable actually is that it doesn't happen.

A very common subreddit that people who make little functional apps/sites
use is:

reddit.com/r/internetisbeautiful

In my case, as Nomad List and Hoodmaps were a bit more data-based, I
submitted both to:

reddit.com/r/dataisbeautiful

In terms of title, pick a title that's more general because you want to con-
sider that it'll be seen on the front page:

I made a site that lets you subscribe to food
delivery for your pet

Submit it and see what happens! And as always, jump in the comments and
participate!

Launching on Beta List

/

BetaList is the internet's original startup directory. Launched in 2010, by
Marc Köhlbrugge to TechCrunch, it has since helped launch thousands of
startups, including being the first launch platform for apps like Pinterest.

"BetaList is the place for early adopters to
discover upcoming and recently launched
internet startups"

BetaList has a strict curation of what they accept, and unless you pay
~$129, you're put on a waiting list for launch which takes 2 months. There-
fore, you probably have to pay to go live immediately. Unlike the name Be-
taList suggest, startups don't have to be in beta anymore to featured. They
do have to be new though.

Generally, BetaList can get you around 500 - 1000 visitors with a percent-
age of those signing up. It's a very targeted tech audience though, and
helpful to get the early users in before you launch on bigger platforms.

There will be hate

Your baby that you worked weeks or months on is now out in the world.
And the world can be a pretty dark place. People will judge your app fierce-
ly. If something doesn't work, well it's bad. But if two things don't work,
they'll just say the entire app sucks. That's how humans work. Think about

/

yourself, you do the same clicking on random links on Reddit. You get an-
gry if it doesn't work. And you dismiss it.

So hate is expected. Because there will always be something people dis-
agree with. It doesn't mean that's bad news. One thing you shouldn't do is
start fighting with strangers on the internet. That's the fastest way to fail-
ure. Instead, try to read through the hate and see actual feedback that you
can improve your app with. And if the launch is ongoing improve it right
away (if possible). That doesn't mean build entire features while you're
launching, but make sure to fix those little bugs for the new people that are
coming onto your site. If you have a native app, that's a hard thing to do
though as you'll need to re-deploy to app stores. In that case, tell people
personally that you're deploying a fix now and they'll be able to update the
app later!

Why be nice to them, you ask? Because people like to hate, but if you then
listen to what they say and act on it, they'll come back with love. "Oh wait,
there's a real person behind this? With feelings? Oh wow!". And they'll treat
you better.

Things not to do

Asking people to share/like/post your product

There's a difference between asking a few friends to give you a head start
by upvoting something. A few! But it gets weird when you start asking
everyone publicly to upvote, share and like your stuff.

I know people who keep asking me to tweet their stuff, and I can tell you I
never did, I never will and I don't consider them my friends anymore. Be-
cause asking for this is fundamentally beyond the point. The idea is that
great things rise up by being rewarded for being great. You can't force trac-
tion. Well, you can. For a little while. But all those people you forced to
share your product won't be there next time, cause they don't like you
anymore!

/

Buying fake upvotes, likes, followers

The same applies to buying fake virality. It won't work. It looks good on pa-
per but it's not actual humans. And people are less and less impressed with
seeing big numbers on somebody's social media account. More important
is, again, what your app does.

So why doesn't this work

Well, it actually does work. For a while. You can create artificial traction.
The problem is that it doesn't stick You'll have to keep adding more fake
virality and the odds of it being picked up by actual REAL humans is quite
small.

Because if you're app was good from the start, it wouldn't NEED any artifi-
cial following. It could push itself just by being great. Because if people like
something, they'll share it themselves, they'll make it big. Especially if it's
something unique and original that does something better than it has been
done before.

Because we're sick and tired of fake stuff. This goes much deeper than just
apps and sites. The whole Zeitgeist is now about people looking for au-
thenticity, because everything around us is fake. We like people that are
open, honest and real. Why? We are bombarded by bullshit marketing mes-
sages. Why do you think we're all installing ad blockers? We want purity.
We want stuff to be authentic and organic! So what's the best way to get
those people to follow you? Be real!

Be organic

So the answer is, be organic! Be real. Create traction by making a great
product that is considerably better than the competition, easier to use and
more original.

The big advantage by launching organically is that you will see if your app
doesn't work. If it doesn't get traction, there's a good chance it's simply not

/

good enough. The idea might suck. The interface might be bad. Maybe the
idea isn't original enough. You'd never be able to find that out by faking it!

Telling your story

Blog

People might call this "content marketing", but I feel this is a sleazy term. It
means that you're writing something with the goal of selling something. I
don't like that. It should be real.

I started blogging years ago and pretty much the preface of Nomad List
was me writing about traveling for 1.5 years. And randomly, because of that
I had a small audience of people that knew me, and that just grew a lot and
helped Nomad List's launch a lot.

Blogging in that way gives you the opportunity to build up an audience
even before you launch.

I have a hunch though that text is becoming less important (lol writing this
in a book). But I think it's true. Look at the rise of Instagram and Snapchat
vs. Twitter and Facebook. People are getting too lazy to read lots of text.
Probably only a few people will actually read this entire book. I wonder how
many actually will read this sentence!

So there's a case to be made that telling your story should happen in a dif-
ferent, or at least, in more media than just text alone.

Press

Why press matters

The importance of press, is that it gets you lots of mainstream users out-
side of your niche bubble. Especially non-techy people that are hard to
reach through platforms like Product Hunt.

Why press increasingly matters less

/

Just like I wrote before about blogging. I think people read press less and
less. Again that's a hunch but I think I'm right. The rise of Product Hunt is
an example of a platform that pretty much took a big bite out of the tech
press pie by automating it.

Then there's the issues with the deep mistrust people have of press these
days. Readers aren't sure if what they're reading is a paid advertorial or ac-
tually a real article about a company. Startup founders are scared to talk to
journalists in fear of becoming part of clickbait hit pieces killing their
careers.

You might need press to kickstart traction, but you definitely need it less
and less when you have traction already. Especially in these times.

If you do use the press, make sure you control the conversation. You set the
angle of the story. Check what type of articles journalists write before you
talk to them. Fact check the articles they post about you or your product
after and ask for corrections if necessary. Press can easily flip a story to be-
come negative about you and your product in favor of page views. The
press is not necessarily your friend, as much as they like to make it sound
like it when they talk to you.

How to get press

Make a press list

The reason most people don't get press is because they simply contact the
main email address of a press outlet like tips@thenextweb.com with their
app's pitch and URL. Here's a little secret. Those email addresses are the in-
dustry's black holes. A lot of stuff goes in them. Not much comes out.

The way to get a journalist to write about you is to make it personal. How
do you do that? Well. First figure out which journalist would actually be in-
terested in your app and find it useful. Every journalist has their own style,
taste and personality. And niche.

/

There's (tech) journalists who mostly write about cryptocurrencies, or only
about travel apps, or only about bootstrapped companies. Find journalists
that are relevant for your app by searching who writes about your competi-
tors or apps in your industry. Just doing that, already gets you further than
99% of people who don't take the time. Shooting 1 targeted email can re-
sult in more success than 1,000 non-targeted emails to every single jour-
nalist out there!

If you know a journalist that already wrote about a previous app you made,
that's a warm connection and it's very valuable. Keep them in the loop
about your projects but don't bug them. They'll be happy to write about you
again if they like what you're doing. Update them about significant stuff,
and give them scoops, that means exclusive news you don't give anybody
else. That's currency for journalists.

Based on all of this make a press list of journalist you want to approach. A
fair estimate is that less than 5% will write about you. Even if you target it
well. So to get 5 press features, you need to contact 100 journalists. That
might even be a positive estimate! It might take hundreds of targeted (!)
emails.

How do you find these journalists? Luckily here's a few directories to find
contacts for journalists. One website to find tech journalists in specific is
Submit.co lets you find a major amount of press outlets. From there you
can go on to find specific journalists.

/

Put every journalist in a spreadsheet and personally contact them. Don't
bug them! In the list, write down how far you are with them. For example,
"emailed?", then "replied?", then "will feature?" and keep track. Don't un-
derestimate this. This takes work especially if you're new, nobody knows
you and you don't know anybody either.

How to approach journalists

Journalists generally hate if you approach them through Twitter, Facebook
or LinkedIn. They still use and read email, just not in the way you do. They
skim through it very fast. The best way to get them to stick is to keep your
approach concise and powerful.

I see so many people write lengthy emails about why their app is the best
thing ever, but hardly anybody is able to argue why it's great. What's the
value for people? And they're all lengthy. Journalists don't have time for
that stuff!

Here’s an example of a bad email that is very typical:

/

Subject: New startup Petsy.com

Hi TechCrunch!

We just launched our new startup Petsy. It’s
funded with a Series A round led by Lion
Capital.

We’re growing like crazy, crushing it right now
and we’d love to tell you more about our
launch this week.

Petsy connects pet owners and pet food. It
works like this, you go to the app, then you se-
lect which food you want. Then you tap order.
It then delivers the food to your house. We
have about 5,000 people in our app and grow-
ing 40%. Thanks for covering us!

-Rick CEO, Founder Petsy.com

This e-mail is intended for the addressee
shown. It contains information that is confi-
dential and protected from disclosure. Any re-
view, dissemination or use of this transmission
or its contents by persons or unauthorized em-
ployees of the intended organisations is strict-
ly prohibited. The contents of this email do not
necessarily represent the views or policies of
Rick Andrews.

Why is it bad?

It’s way, way, way too long, ain’t nobody got time for this

/

It gets to the point way too late

Subject is vague

It’s not personally written towards the journalist

It’s full of vague bragging instead of facts (e.g. “we’re growing like
crazy”)

It uses buzzwords like “crushing it” and jargon like “connecting pet
owners”

It’s full of ego and business lingo (like CEO, Founder, of what?)

There is no clickable link to your startup

It has a ridiculous disclaimer

If you look at it from a distance, it’s just a block of text

This is not good. But this is what journalist get by default.

So how should you approach a journalist?

Most importantly: be concise. Keep your email to one or two sentences
max. Here's a good pitch to Susan from TechCrunch, who you know is inter-
ested in food or pet industry startups:

Subject: Food delivery startup for pets

Hi Jody! I made a site that lets you subscribe to
food delivery for your pet. Let me know if you
need more info :)

https://petsy.com

/

It's friendly, fast and clear. The journalist has the opportunity to check it
out themselves without you selling it to them. And yes, if they like it,
they'll reply and ask you for more info! That’s when you can give all your
data and info.

Be sure to reply to them ASAP as they're impatient. They might be waiting
to write an article on you and if you reply immediately, they can get on
with it. If you don’t they might scrap it and write about something else.
They might reply:

Nice! Do you have funding? Revenue? What’s
the market size? Any screenshots I can use for
the article?

Tell them quickly and concisely again and send them what they need im-
mediately. Make it as easy as possible for them to write about it. Send them
screenshots and press material that is already cropped perfectly, so their
job is easy!

Make a journalist’s job easy and they’ll be happy to write about you!

And be nice!

Even better is to add a personal touch, if you know something personal
about journalists that seems relevant to your app, tell them. If they have a
puppy called Robert DeNiro (and talked publicly about it), you could ask:

/

Subject: Food delivery startup for your puppy
Robert de Niro

Hi Jody! I made a site that lets you subscribe to
food delivery for your pet. Maybe it'll save you
some time feeding Robert DeNiro.

https://petsy.com

Gaining controversy

There's very few times where I'd say Trump is a good example to follow. But
in case of marketing, he might give you some hints. Trump became presi-
dent through controversy. And without making this book political, it's im-
possible to deny that didn't work. He became president.

The problem is that most people are not controversial. Because we're nice
people. We don't like to shock. We're not raised like that. But if you want to
get attention, a little bit of controversy will get you much further than the
rest. And that's most certainly essential to getting press.

The "news" is literally called "news" because it writes about things that are
"new". If you just build an adaptation of the same-old thing and tell the
story about it in the same way as people did before. Well, they're not going
to write about it! So it needs to be fresh. Either your product needs to be
radically different or better (hint: most people think their product is, but it
isn't), or how you tell the story about it needs to be different. Controversy
is by definition different than the "norm".

I use controversy all the time. I wanted to make an app to get people to
complete their goals. But when they don't make their goal by their dead-
line, it charges their credit card. First I thought, I should donate it to a
charity. But then I thought, fuck it, let's keep it to myself! Then I had to
find a name: I wanted to call it "just do it". But Nike owns that trademark.

/

So I thought, "go do it". Okay, that's nice but a bit plain. What about "go
fucking do it".

I asked friends, and they all said that I should remove the "fucking" part.
And I agree, in most cases it's not even that it's offensive, it just looks
cheap and cheesy. But I did, and I registered GoFuckingDoIt.com and
launched it. It went viral all over the press and struck a right nerve. The
two reasons were the name and the fact that I was very brutally honest that
I would get the money if you failed your goal. Every single time I presented
the idea and said that, the audience started laughing. So there's something
there. It's cheeky, naughty, controversial.

The way I market this book is a bit controversial. I will diametrically oppose
the old way of doing startups, namely raising funding through venture cap-
italists, attack it, and provide a solution: namely, do-it-yourself, ship lean. I
make my slightly controversial message very simplified: "VC is bad, indie is
good". People don't have a lot of time, so you need to get your point across.
Even though "VC is bad, indie is good" is simplified, it does align with my
core values. Sure enough, not all VCs are bad, and there's plenty of indie
businesses that are also bad, but generally I agree with the statement. And
it sells because it's simple and controversial.

Which press outlets

Tech and mainstream press is merging and has lots of overlap. Here's the
biggest outlets right now in both. This list will probably be outdated quick-

/

ly if this book is getting older, so take it with a grain of salt.

A quick way to find which press outlets to target right now is to check
where your favorite apps or your competitors have gotten coverage. Also
remember to find press outside of tech and mainstream, but in the niche of
your product. If you're building a software-as-a-service app for hair-
dressers, be sure to reach out to the main industry magazine/website for
hairdressers in America!

Tech press

The main tech/business news outlets right now are:

The Next Web

Forbes

Lifehacker

Quartz

Mashable

Fast Company

Entrepreneur

Business Insider

WIRED

Inc.

Tech.co

Mainstream press

The most important mainstream news outlets right now are:

HuffPost

/

The New York Times

Wall Street Journal

The Guardian

Washington Post

CNBC

CNN

The Telegraph

Observer

VICE

Mirror

Slate

Don't stick to one launch, keep launching

Make every feature a launch opportunity

A more recent strategy by many startups is to make every feature launch a
special promotional opportunity. By adding new features and broadcasting
them to press you can keep getting attention. Even if you've already
launched ages ago, people like seeing improvements. And they'll write arti-
cles about it, resulting in traffic coming back to your site.

Side project marketing

Building up from that, many startups are now simply launching lots of mini
apps with distinct functionality that before might have been a feature of
their existing app. But by decoupling it from their main app, they can use it
as an entire new launch. And that gives them the full benefit of a new
product launch.

/

This is also called "side project marketing". On my self-confident days, I
think I had something to do with it when I tried to launch 12 startups in
12 months. It got people the idea that you don't need to ship perfect apps,
you just need to ship a lot, and you'll get way more press than anyone else.

A famous example of this is Buffer. They launched Pablo, an online image
editor to put text on photos for sharing on social media. More recently they
launched Respond, a messaging solution for doing customer support on so-
cial media. You see the red line here. Their industry is social media, and
they make lots of little apps now for it. They could have launched these as
features of Buffer, but they specifically choose to not. This way they lever-
age getting press for each new product. And if they want, they can either
spin off the product from their company entirely, or integrate it into their
core product (like Buffer's main app).

Another famous example is Crew. They launched their side project Un-
splash, a free stock photo site, which became even bigger than their main
business. Then they did it again by launching HowMuchToMakeAnApp.-
com, a calculator to see how much it costs to build an app. They got a crazy
amount of press just by doing these two mini apps.

How to stay motivated working on one product

Keeping up the long-term motivation for a product is hard. And I think
some people have difficulty keeping up motivation for an idea because
they're not getting feedback from the market. You shouldn't work on an
idea that isn't taking off. You can't just for months and years upon years
work on something that doesn't give any feedback. It is important that you
at least get people excited about your app or your idea and people using it.
If nobody's using it, then you're going to lose motivation. For me, the moti-
vation is intrinsic if people use it or if I make money with it. Then I know it
works and I want to keep working on it.

If it doesn't motivate you, sell it or kill it

/

If your idea is actually successful and it becomes a real product, it becomes
a company that actually makes money, then it's very normal to become
bored with it. Maybe your long-term vision is not there anymore. You don't
think it's going to get any bigger. In that case, sell it. Sell it to somebody or
hire people to run it for you or automate most of it so you don't have to fo-
cus on it anymore. Then you can focus on an idea that does motivate you
because it's really important I think. For me, work has to be motivating for
me. If I don't believe in what I'm making anymore, then I don't want to re-
ally do it anymore. That's when I lose the motivation. It's very important to
have motivation for your idea. Make sure you just kill your product if it
doesn't motivate you and if it doesn't get feedback from people.

How many ideas should I work on at a time?

I think my strategy is that I work on a lot of stuff at the same time because
I want to not have all my eggs in one basket. I think there's a higher chance
of success if you try different stuff. Right now, I have two main projects. I
have a third side project I work on. Then there's two others that are kind of
small that might go somewhere in the next few months or few years. The
most important ones obviously get most of the focus. They get like 80% of
the focus. I also get pretty bored quickly, so switching projects works for
me.

It depends on yourself though. How much time do you have to work on
ideas? If you do have all the time in the world, then just work on different
stuff. If you can't work on a few different ideas because you think it takes
too much time, you're probably spending too much time per idea, too much
time on executing something. You should make things more minimal.

Conclusion

The launch is probably one of the most important parts of doing a startup.
Everyone underestimates its importance and difficulty. It can make an av-
erage product or break a great product.

/

You should launch early so you get feedback from users quickly. Launch on
the typical tech sites like Product Hunt, Hacker News, then go for the
mainstream on Reddit and go for your product's niche on specific niche
platforms. Don't spam your launch, but do let people know you've
launched, like your followers and press outlets. Most importantly, a launch
is not finite. If you'll have a product running, you'll keep launching repeat-
edly every few months or years when you have specific big new feature
developments.

Nowadays, the launch is perpetual.

/

Resources mentioned

MailChimp

Google Analytics

MixPanel

Amplitude

Hotjar

Product Hunt

Hacker News

Reddit

/

Your homework

Make a list of places you will launch your first product,
these can be the typical ones like Product Hunt, Hacker
News and Reddit, but make sure there's more niche
platforms on there too.

Write a title and description for each platform you will
launch too. Personalize it for each platform depending
on its audience. Make sure it doesn't look spammy.

Do a final check that your product actually works. Can a
new user immediately see what it is about and start
using it? Go through the process multiple times to make
sure every little bug is gone.

Pick a day and time and launch!

/

🌱 Grow

/

Introduction

So you've launched your product. You've been on all the big sites, you
got major press to write about you. But it's now been 2 weeks since
launch day and you're (naturally) seeing traffic and usage drop off.
What's going on?

Well, it's one thing to launch a product successfully. It's a whole different
challenge to keep that momentum going and make your product grow in
the future. It's somewhat of a mystical art. Everybody wants to succeed at
it, and only some do. And those 'some' are only able to do it sometimes. If
anybody knew exactly how to do it repeatedly, they'd be very rich.

I've only been able to do it a few times. So I'll tell you what I feel are impor-
tant things to try, at least.

First to get a few things out of the door. Don't hire growth hackers. 99.99%
of them are useless and are trying to sell a mystical art they often didn't
even succeed at themselves as something you can just buy as a service. It
doesn't work that way. If anything, growth should have been in your prod-
uct from the start. The product has to be intrinsically viral nowadays. It
needs to be something people really want or need. Like people staying up
late using your app/site/product. People mentioning it to their friends for
days. People need to be excited for it. You can't just get a growth hacker to
buy that. Additionally, growth hackers usually have dark blackhat spammy
techniques that might get you short-term results, but long-term you'll be
punished by karma (or Google, or
$insertOtherMegaCorpOrLawEnforcement).

Why is organic growth better?

So what should you do? Growth to me should be mostly natural and organ-
ic. Especially in the early stages (e.g. after launch) of your product. There's
a few arguments I can make for this.

/

First off, it's free, you don't need to pay for ads or traffic.

Secondly, it gives you direct feedback if your product is good enough or
not. If you'd be using non-organic ways of growth like ads, you'll see your
product's usage grow. And you might think things are going well. But when
you stop paying for those ads, those users are probably gone fast. This is
actually a gigantic problem with funded startups. They can keep their big
numbers up while they pay (sometimes 100%+) of their revenue in ads. But
once the funding runs out, it all falls apart. So what happens if you don't do
that? And you go for organic growth? You'll quickly see your product NOT
take off, and you'll have to tweak stuff until it does take off.

Before you say it, I'll say it. Yes, you can combine the two. Obviously you
can segment paid traffic and organic traffic and see who is doing what.
That's probably smart. But personally I'm always for organic first. See if you
can get your usage up yourself. It's cheaper and it gives better direct feed-
back if you're doing the right thing.

When you've got nice traction (depending on your app obviously, but I like
100,000+ MAU as a threshold), you might be able start scaling it up with
paid traffic like ads. Why then? Because you've already proven your product
works for people. Now you just need to get more of those people in to fig-
ure out that they want/need it.

I see a lot of people do the opposite. They start with paid traffic first, then
end it once money runs out, and then they see the product fails. Because all
the users they ever had were artificial. Don't be that person.

Especially...fake users

It's pretty crazy I even have to mention this, but I see this too often: people
buying fake users, engagement, followers, likes etc. This is the fastest way
to failure. If you didn't get the memo, people don't really care about follow-
ers/likes anymore. Actually only having a few, might give you the feel of
being an "underdog" and they'll love to support your brand. Running bots

/

on social networks that favorite posts with certain keywords (try tweeting
#growthhacking for fun!) is blatant and people will actually get annoyed by
you and your company and you'll be worse off.

I tried it on Instagram to get a headstart for Nomad List, because I was late
to get to the platform. And really, it doesn't result in any organic traction.
It's better to come up with a strategy to build your brand on there for that
specific platform than to just buy yourself into it. Again, it won't result in
organic traction.

Trust me, if people like your product they'll use it and you'll get people en-
gaging with you. There's no shortcuts though, this can take time. Years.

How to get organic growth

Growth can be divided into two by 1) either reaching people who don't
know your product (new users) or 2) people coming back and using your
product more (returning users). Reaching new people takes effort and
means you literally have to reach out of your current environment to find
them. Re-engaging previous users is a lot easier though. We'll now discuss
both.

Get new users

Keep launching

The best way to get your first users is to launch the first version of your
product fast. But a first launch will just be a single spike of new users for a
week or so and then it drops off.

Nobody ever said you can't keep launching though. If you add a whole
bunch of new features you should tell the world about it. And the best way
is to just launch it as a new version of your product.

You can't do this every week, or every month, really. But, but every few
months - why not??. Sure. It shows your product is evolving and getting

/

better. A good way is to put a version number on your site. You want to
launch Product 2.0. And then 3.0 etc.

Spinning off

So many times when making a new feature I found out that feature was
strong enough to be a product of its own. For example, I started adding
coworking spaces to Nomad List. The thing is, there's lots of non-travelers
that a giant index of coworking spaces would be useful to. So I spun it off as
a separate app called Places To Work (placestowork.co). It runs well on
mobile and lets people walk around while it uses the GPS API to see where
they are and direct them to the closest places to work.

Spinning off stuff works well because it also gives you an entirely new
launch to get traffic from. The product you spin off should be strong
enough though to allow it to be its own product.

Tell stories to people & press

While you keep improving your product, it's also important to keep getting
into press. Even after you already launched the first time. A way to do that
is by telling stories.

Instead of just adding a feature to your product and ending there, every
new feature can be a story. How is what you just added changing the vision
or path of your product? With Nomad List I started with a list of cities.
Then I added coworking spaces, hotels, and finally you could see where
other travelers were at any moment. You can see that as just adding fea-
tures, but you can also make it a narrative where you're slowly moving
down the chain of scale to capture every little part of a traveler's experi-
ence. That narrative is interesting for press to write about. Just adding a
feature isn't.

Stories can be more personal than just features though. Tell about your
own journey and maybe struggles before or during the build up to your
product. Before I had anything really successful, I had a YouTube channel

/

for electronic music that made some money. That money made it possible
for me to travel and work somewhere else than home. That experience
helped me make a site for those travelers. And that process of building a
bootstrapped startup gave me the information I'm sharing with you now in
this book.

That's another narrative. And it's much more original to tell that than to
just say "I build another internet company". You did but there was stuff be-
fore and after that that's more interesting to people you meet (that spread
your story), and especially to press. Your story is unique in some ways, so
figure out why it is. And tell that.

Build in public

One way of storytelling is building in public. The last few years, one of the
most effective strategies to get promotion has been to "build in public". It
means to publicly blog, vlog or in any way communicate the entire story of
building your product or startup from the start. You're completely transpar-
ent about how things are going, even if things don't go so well. It's about
sharing the stuff you learn from trying to build a product.

One of the greatest examples of this strategy is Buffer. From the start
they've shared every little step in the way to getting where they're now on
their blog Buffer Open.

Another good example is Drew Wilson who livestreamed the building of
his new product Plasso for a whole week. He didn't just stream his screen,
he streamed himself sleeping, waking up and making coffee. It worked be-
cause it built attention around him and his product.

/

Why does being transparent work? Because people like to be part of success
(or failure) stories. And with every little step, there's an opportunity to get
attention and press by sharing it with the public. People become engaged
with your product by reading about it and a share of those people may be-
come actual users of your product.

In that respect, transparency is very meta in its nature. By sharing about
the product, it usually makes the product itself do better.

You have an advantage right now (as of writing) because most companies
are not transparent at all. It's a relatively new trend. They're not open
about their progress. So for now, it'll bring you attention. There's a clause
though: if the people who are interested in your progress are also potential
users of your product then do it. It doesn't make sense otherwise because
they'll never convert into users.

This goes further than startups. Right now we live in the age of trans-
parency. If you show your vulnerabilities and mistakes it doesn't make you
look weak, it makes you look like a human. And that works because your
audience is humans (okay, and cats!) and they'll recognize themselves in
you or your company.

A good example of transparency is an app called Arq Backup, it automati-
cally backs up your data to the cloud. In 2017, they discovered that one of
their versions actually deleted your backups. This is the most terrible thing

/

that could happen to backup software which has the goal of SAVING your
backups. The maker of the app wrote a personal post describing what hap-
pened and apologizing. People were angry but their anger was less seeing
how the maker handled it. Don't hide. Show your mistakes. Fix them. Be-
hind every company is imperfect human. Your users know and appreciate
this.

More on this in "Telling your story" .

Make people share easily

This is a very common thing so many people get consistently wrong or for-
get but it's so major. You can undoubtedly argue about how important so-
cial networks are these days, and I'm not a giant fan of Facebook either, but
they still account for large parts (up to 30%) of all traffic sources on the
web.

Facebook uses a set of <meta> tags in your HTML called Open Graph and
they start with "og:". Make sure you fill them out for every page on your site
and if you can just program them so they dynamically get generated. The
most important tag is "og:media" and it lets you set a picture for each page
on your site. It's very important to use this! A shared link with a picture on
it gets so much more clicks than one without.

/

Twitter uses something similar called Twitter Cards. It also involves
<meta> tags and when it works it'll show a big picture on the Twitter time-
line when people share your URL, just like Facebook does.

Even if you're making a native iOS or Android app, it makes sense to let
people share stuff and add some little tiny web part of to it to do just that.
A good example of a big company doing that was Instagram, who never had
a big web presence. They just had a page with the shared picture and a but-
ton "Install Instagram" back then. That was good enough to reach the user's
goal of sharing the picture and the company's goal of growing the app's
installs.

Here's where it gets even better. If you have some programming chops, you
can make the image for each of your site dynamic. Product Hunt uses a ser-
vice called URL2PNG that dynamically makes screenshots of each page on

/

their site, so that if you share it you see a preview of the page. That's cool.
But you can do better.

Make a page in HTML that displays the most important information about
the page you want to share and is very visual. For example, if you have an
app for marathon runners, and you want them to share specific running
routes, why not make a page that shows the entire route on a map with
thick fat lines and maybe some data like "25 km / 15 mi" written in the top
right. Now you think, what do I do with yet another page? Well this isn't a
page. You're going to screenshot this page and use that as the image for the
original page users would want to share. That screenshotting can be auto-
mated with URL2PNG. Or if you want to do it yourself with a Headless
Chrome script that screenshots URLs. It's a bit too extensive and technical
(and subject to change) to go into this deeply. But Google everything I said
and you'll figure out the technicalities of it. The goal is to make dynamical-
ly generated shareable images for every page on your site. You'll see lots
more people come in from social media after you do this.

A great example is Gyroscope's app on iOS. It lets you import lots of data
from your fitness trackers and iPhone's Health Kit sensors. Then it shows
you visualizations of that data in a really pretty format. For example, I can
see a beautiful map of my city with a path traced of where I walked that in
the last few weeks. It's shareable to my friends and gets more people using
Gyroscope.

/

Human-readable URLs and slugs

Let's talk about URLs. Do you have an interactive element to your site? For
example, if you have a product comparison site, do you have lots of filters
people can select? Make sure that after people select new filters you add
data to the URL of your page so that they can share the exact state of your
page when they shared it. Instead of

http://compare.com/razorblades

Make it into:

http://compare.com/razorblades?
size=large&blades=4&color=blue

Or even better:

http://compare.com/razorblades/large/4-
blade-razors-in-blue

Make sure every interactive state of your app or product is shared in the
URL or it'll confuse people.

More cool stuff you can do is letting people share specific stuff. For exam-
ple, on your product comparison site you can suggest sentences to share
like "The Gillette 4-blade razor is 6x more powerful than the Dollar Shave

/

Club 2-blade". Something like that. Program your site to make dynamic
sentences that explain the current state of your app the user is in, but in
human language.

On Nomad List, if people select the filters "surfing", "fast internet", "near a
beach" and "safe for women", my JavaScript code generates this URL:

https://nomadlist.com/cities-with-fast-
internet-safe-for-women-to-travel-alone-
near-a-beach

When the page is opened, it will look like this:

It's not easy to code this, and it took me awhile, but it's important to make
the URLs easy to understand and share for the user.

Launch an API

A good strategy to grow is to launch an API. This means you make your
data (and sometimes features) on your site accessible to other startups.
Well-known API's are Facebook's API that lets people "Login with Face-
book" without creating user accounts. Or Twitter's API that lets you tweet
with a user's account from within your app.

Making an API means other startups can integrate your app's features and
data into their app. In case of Nomad List, that might mean Booking.com
shows a Nomad Score next to destinations on their website. This is good

/

because it might mean more brand awareness and traffic for Nomad List,
and for Booking.com it helps their user experience.

There's big risks involved with sharing data through an API though. In case
of Nomad List, I launched my API that shared ALL public data from my site.
Within 90 days, there were 6 identically looking clones of Nomad List in
English, Russian and Chinese. A few of them launched on Product Hunt
and Hacker News with success and there was no mention of Nomad List at
all. It helped them, it didn't help me. People launched apps to the App
Store using my data, without any links back. Obviously, this wasn't the goal
and it was now negatively affecting my company. So I disabled the API af-
ter that.

That's why you should probably think about your goal with making an API
and how much data and features you want to make accessible. You can also
require companies to register to use your API (and give them an API key)
and cut them off if they abuse it.

If an API works well for you, it means increased brand awareness on other
sites, so it can act as a funnel to get you more users. And it helps the com-
pany using your API with extra data or features. That's great for both
parties!

Build with your users

Another big part of growth and people coming back is how to get ideas for
more features your users want to have. As mentioned before, on every web-
site or app I have a small feedback box. You can set this up with a lot of ser-
vices like Olark or Intercom. What they do is they add a small chat box on
the bottom left or bottom right of your web page. People can simply enter
like, "Hey, there's a bug here" or "I want this feature." This goes straight to
your email. The cool thing is that actually people send pretty cool stuff.
They send lengthy emails, messages, reports on features they would love to
use.

/

People love doing that because they love co-creating a startup with you.
The people that give you those ideas are usually the best users because
they're experts at your product. Choosing what to build next, based on what
they're saying, is amazing because many times, after you've already solved
your own problem, you think that this is it. A lot of people use the app have
extra information for you. I'm not saying you should build for other people.
You should build for yourself, but they can give you different perspectives
on your own problem space a little bit. That's super useful to think of mak-
ing new features.

Measure how you stand up against your
competitors

Now that you have a running product. You want to know how it's perform-
ing relatively against your potential competitors. A great app for this is
called SimilarWeb. The data isn't that accurate for smaller sites, e.g.
~10,000 visits per month, but gets accurate around >100,000 visits per
month. Even if the data is a bit different than your Google Analytics stats,
relatively to other competitors you can see if you're doing better or worse
over time. That's pretty valuable to make decisions on. Remember: traffic is
a very limiting metric though. Your competitor might get more users and
visits but still make less revenue than you. Sometimes you can deduct how
much money they make from their traffic though. Sites that get 1,000,0000
visits/month often make $1 to $10 million per year if monetized well. Sites
that get 100,000 visits/month often make $100k to $1M per year similarly.
It's a very very rough rule but 1,000 visits usually means $1-$10 (if they
monetize properly).

Conclusion

So, what's the best "hack" ever to get people to come back and grow a
product?

Make a really useful and great product!

/

That's way more efficient than trying to get users to share stuff on social
networks, emailing them or sending them push notifications to come back
to your site or trying to get into press all the time.

If people really love your product, they'll come back to it. It'll be planted in
their mind. They need it! So whatever you do, focus on making the product
great first. Then think about growth later.

That doesn't mean you shouldn't optimize for growth with the techniques
described here. But if the product sucks, you can try to hack growth as
much as you want, but it won't turn into sustainable growth and just die
down again

Growth is a multiplier for an already great product.

/

Resources mentioned

Buffer Open

Google Analytics

Drew Wilson

Social media share images

/

Your homework

Analyze your analytics from your current launch. What
have you learnt? Did many people who visited your site
or installed your app kept using it? How was the fall of
users after a few days?

Analyze the user feedback you got from users directly
(through a feedback box), but also in the comments
sections of the platforms you launched it on. If you had
press coverage, what did they think about it? Use this
feedback to immediately improve your product.

/

💰 Monetize

/

Introduction

You now have a working product with users, but you're not making
money yet. Together we'll try apply business models on different
parts of your product to see what users will pay for.

Why is monetization so important?

It seems too obvious to even ask but these days, in the world of startups,
it's actually seldom you see any company make any real money

After Hollywood movies, the startup narrative has become so incredibly
jinxed that you now have millions of people following a dream of becoming
a billionaire by programming away while eating pizza and sleeping in the
office. Who cares about money right? We'll become billionaires SOME DAY!

But most people don't.

So that's why especially now, it's more important than ever to focus on
monetization. Monetizing a startup early on is the best thing you can do
for yourself, your friends, family, society, and pets.

Moreso, if you're never able to monetize your app, you'll never be able to
turn it into a business. You'll always be stuck doing maintenance on it for
years to come. You'll never be able to hire someone to take over the work so
you can focus on the long-term strategy of your company. Wait, no, it won't
even become a company if you don't charge users for it.

/

"You aren't running a charity. You're running a
business. If people won't give you money for
your product, you have an existential crisis on
your hands."

— Josh Pigford, founder Baremetrics

Don't be afraid to charge money

One of the most common problems I see with makers these days is that
they're so incredibly scared to charge any money for their apps.

They make something, launch it, get people who use and love their product
and then are afraid to scare them away by charging for it.

The problem is, if you never charge for a product, it'll never become a real
business, it'll remain a side project forever. That's fine. But you'll have to
maintain it forever too. That costs time and money. And the whole point
was to make a business, right? So start today and call 1-800-STARTUPS
(just kidding).

Don't be afraid. People are happy to reward you for your work. And if your
product really improves their experience of life even a little bit, people are
happy to pay for it. But those people will only be a small percentage of all
the people that are happy to use your product for free.

What I mean is, if you have 1,000 people using your product actively, don't
expect more than 5% to pay for it. Probably fewer. So your paying customer
base is fewer than 50 people.

Here's the challenge. A side project can be successful with 1,000 users, but
it won't be a business with 1,000 free users. You need 1,000 paying users.

/

That means you'll need a side project that would have 20,000 potential free
users. Think about this.

That means not every project is monetizable. And if that's your goal, and
it's not reaching that scale. Then it's probably best to shut it down and try
again. Don't waste your time!

Charge money, get hate

Here's another thing that you wouldn't expect you'd get, but if you start
charging for a product, you'll get hate. Internet hate. A lot of it.

There's an interesting subculture on the internet of people who presume
everything should be free, "because Facebook is free too, right?". These
people are the problem.

People will go on Reddit and other internet forums and write about your
app or site and simply attack it with posts like:

/

HOW DARE HE CHARGE FOR A SIMPLE
FACEBOOK SCHEDULER APP
by GrumpyCat2019

i can't believe what just happened. so anyway i
was feeding my cat and then i was trying to
find an app so i can schedule my social media
posts. i really put too much time into sched-
uling this so i need an app.

so i found this app MediaScheduler2000.com,
okay so i sign up and what the hell! i have to
pay $25/month for it? who does the maker of
this app think he is? what a capitalist. he's just
making easy money over the backs of others.
this should be free!!!1 it's always these big
companies trying to make money off of the lit-
tle people!!!!!even gmail is free!!!!11

DON'T SUPPORT THIS APP!!! THE MAKER IS
EVIL!!!11oneone

You'll get this a lot. And it's fine. Don't lower your prices. Don't make it
free.

These people are not your customers. These people will never pay for your
app, not even if you lower the price. And it doesn't matter that they write
about you in a bad way even if they get a response from others.

There's enough sane people who do have money to spend and who'd love to
spend it on your app. They will not whine about your price on internet fo-
rums. Instead, they'll pay you. That's your customers.

/

Build with monetization in mind

This may limit your creativity, but I strongly suggest you build with mone-
tization in mind early on. Especially if you don't have a lot of cash flow now
and actually need a project to give you some revenue (to literally pay your
bills).

If you do have lots of cash flow (and runway), you can experiment more. If
you don't have monetization in mind it can often lead to more interesting
projects, that might also have more interesting ways to monetize later on.
It just won't be as clear in the beginning. That's fine if you don't need to
make money quickly.

Here's the interesting thing though which you see with both entrepreneurs
and artists alike. Often, their best work was when they were constrained by
resources. Musicians usually make the best and most authentic songs when
they were poor. Entrepreneurs made their best apps when they needed to
make something successful and their was pressure to pay their bills.

Here's a test: how many entrepreneurs you know who became successful
(and rich) and then made a second project that also became as successful.
It's fairly rare. And it's because success changes people's life. They are no
longer (financially) dependent on the success of a project. They already
have had money and success. Often the "chip on their shoulder" of "I'm go-
ing to show the world I can do it" is gone. Also having money gives them
TOO MANY resources. They'll overengineer a product and since they're
now in a small minority of successful people, they're not the target cus-
tomer anymore either.

That's why the position you're probably in now, where you're heavily bound
by resources is a competitive advantage. You can much more easily com-
pete with big entrepreneurs than you think. You're pure and real. Probably
more than I am now. I'm jaded already. You're limited resources make you
creative. It gives you a very clear goal and a strong focus.

/

Monetization is validation

In the last few years, we've seen monetization become not just more im-
portant for startups as venture capital money runs out. We've also seen it
become a validation tool in itself. If people are willing to pay for a product
early on, it gives it good odds to succeed later. Because one person paying
for something means you just need to find thousands of other people like
that person and also make them pay for your product.

A famous example of validation by monetization is Buffer. They started
with a landing page that described their product and they added a "Plans
and Pricing" button. Once people clicked on there, they discovered there
wasn't actually a product yet. They could add their email to get a message
when the app would launch.

This was 2011, a long time ago. My own iteration of this idea is way more
direct. Add a Buy button, if users click it, show an actual credit card modal
where they enter their details. They click Pay. Then you show an alert "Sor-
ry, we didn't charge your card but thanks for your interest. Our product
isn't done yet, but we'll let you know when it is". This means the user actu-
ally was about to pay but they couldn't because your product wasn't ready
yet.

If you log how many people actually complete this process, you can make a
rough estimate of how many people would pay per month and how much
revenue you'd have. And you know if it'd be worth to fully develop the
product (or feature) in terms of how much it'd cost you and how much rev-
enue it'd make.

/

This type of validation is way better than just having a landing page with-
out a product where you might get 10,000 visitors. You know nothing about
the intention of these 10,000 people. They might not even like your
planned product.

Business models

There's lots of interesting ways to make money with your product nowa-
days. I'll discuss the most popular ones now.

Limit features to paid users

One of the most common and obvious ways to monetize is limiting features
for paying users only.

You make your app with every feature you want in it, launch it, then see
what people use extensively and which features they value most. Figure
that out with analytics or talking to users (or just intuition). Pick those fea-
tures and test if you can make them for paid users only. Keep them avail-
able in your product's interface but once people click/tap them, show a
popup/modal that reads:

To use this feature, please upgrade
[UPGRADE]

Then as soon as possible, push them to a payment window before they
change their mind! Now you have a paying user.

This is powerful as the emotion involved here is, "Oh wow, I'd like to use
that feature!" to "Aargh! I have to pay?" to "Okay, how much?" to "Hmm, $5
is not that much, okay whatever, it solves my problem!".

It's not the most fun emotion, but it works if you make the conversion fast
and smooth. After they pay, immediately enable the feature and let them
use it. Done!

/

Pay-per-feature

You can do this in many ways. You can let customers unlock lots of features
at once. You can even let them become paying subscribers (more on that
later in this chapter). Or you can make each little unlockable feature a sin-
gle payment. For example, $5 to use the sharing feature, $10 to add a world
map. Whatever, really.

I actually think this "pay-per-feature" model has lots of potential and I'm
surprised more people aren't trying it on the web. You see it in native iOS
or Android apps a lot. Especially in games. You could do the same for web
apps. Charge per feature that the users want to use and price accordingly.
Either the most popular features could be the most expensive, or you could
charge a lot for the features that are more custom and niche. Both models
can work.

Ads

The online advertisement is in quite a difficult place. And it's put it there
itself. Their ads are so bad, and so full of malware and viruses that we've all
started to install ad blockers. And if we don't have ad blockers, well, we just
don't really click on ads a lot anymore (again, because they're so shit). Ads
these days are annoying, ugly and spammy. We can't even stand ads on
television anymore so we'd rather pay Netflix $9.99 per month and watch
that instead.

We can agree that traditional ads don't make any sense anymore in a time
where we decide what we want to do, watch and listen to. We don't want to
be interrupted by a voice that tells us to buy something we don't want or
need. We're Generation Fight Club.

Is there any future for advertisements then if everybody is sick of them and
blocks them anyway? Yes. They're called Native Ads.

Native Ads are ads that don't necessarily come from some big ad network
like Google. You write, design and sell them yourself and customize them

/

so they fit with your entire product's look, feel and, most importantly,
objectives.

If you have a site for travelers like I do, and a bank comes up to give adver-
tise with high-interest predatory loans, I'll immediately say no. Because it
means I'm making my users' life a lot worse. If there's a tool that travelers
can use (and I would use), I'll happily let them advertise (if they pay me). So
it's about having ads you'd like yourself, that are actually helpful, and that
don't look and feel out of place. Joe Rogan's podcast is a good example of
another product which maintains the same strategy. Joe only advertises
with products he'd use himself, and he tells about them in his own way,
without a script. That's native too.

Do native ads pay well? It depends. For me, they pay a lot better than
Google AdSense does. Let's say I'd install Google AdSense on Nomad List
today. I'd get an ad like this:

Firstly, it looks ridiculous and spammy. Google pays about $1 for 1,000
views of this ad. With 500,000 views, I'd make $500 per month! That's not a

/

lot for a site my size. Secondly, it's not extremely relevant. Sure it's a hotel
booking ad, but how about something my users actually need? I think they
already know how to book a hotel by now!

Instead of using Google Ads, how about I talk to a company that is really
interested in travelers and they have a product that closely fits with my au-
dience, such as a high-tech backpack. Or a VPN, so people can always con-
nect to the internet securely? Or a laptop stand that travels could use to
work remotely and not get back injuries? Or a remote work company like
Automattic who recruit remote workers?

In that case, I could do a native ad (hint: it's the Automattic one).

There's a few things that are different here vs. the Google ad. This native ad
is friendly, honest and simply designed. It fits the look of my site. The topic
fits the audience of my site. And it pays 5x to 20x as much (e.g. $2,500 to
$10,000 per month) as the Google ad because I make a custom deal with
the company instead of getting resold through an ad network.

Guess what? My users are happier seeing native ad than an ugly looking
Google ad that most of the time doesn't make any sense anyway. It makes
my site look more classy, and I make more money!

Happier users, happier advertisers, higher conversion and you make more
money. What about ad blockers? Well, since it's a native ad (it's custom), it's

/

hard to block. Plus, because the ads are truly relevant to the audience, users
won't despise the ads and want to block them, generally.

Native ads don't even have to look like ads. They come in endless shapes
and sizes. IT simply means you connect your audience to a company that
fits and where both your audience and the company gets a positive result
from it.

Congratulations! You've just created value for everyone.

One important note: always specify a native ad is in fact an ad by writing
on it "Sponsored" or "Ad". If you don't, you'll be breaking advertising laws in
many countries!

Sponsorships

A popular model, especially with open source projects and small side
projects, is sponsorships. You make something that many people find very
useful and it aligns with a big company's mission. If you get some attention
for your project, a company might ask you, or you can ask them, to sponsor
you. This could be a fixed amount per month so you can cover the costs of
keeping your product up and of course continuing to develop it. In return, a
company might not require anything, but mostly they'd like to have their
logo appear on your site or about page.

Which companies should you aim for here? Well, companies with lots of
(venture capital) money in the bank that look to grow and get more brand
awareness are a good target. If they don't reach out to you, send them a
short email introducing your product and how it aligns with their mission.
See if they'd like to sponsor it for $250 to $2,500/month. If you get 4 spon-
sors at $250/month, you're already profitable enough to keep yourself alive
(somewhat).

Patronage

/

Patronage is a more recent and very interesting model that's only going to
get bigger in the future.

Patronage originates in the Middle Ages when artists were paid by royalty
to live in with ehm and paint their daily lives. They made portraits of them
but also scenes and landscape paintings of important events. Pretty much
they were the digital camera for kings back then. The good thing is, it al-
lowed artists to get fed, get a roof and stay alive. On the side they could
work on their passion of making real art. Kinda like a side project.

Fast forward a few centuries and patronage is back. In our case it means
that if we're a creator, illustration, musician, artist or just a maker, you ask
the people that like and use your work for money. Directly. Usually your
work stays free, but you simply ask for monthly donations. Many people
struggle with this because it comes across as begging, but these days it's a
bit more classy than that. People are less afraid now to say "I want to work
on something cool but I have bills to pay, so help me!".

There's a few platforms for patrons in different industries. The main plat-
form is Patreon which is mostly focused on creatives but now branching
out into journalists and even game and software makers.

We're now also starting to see patronage in apps itself. A good example is
Marco Arment who made a podcasting app called Overcast. The app itself
is free (and very good) but after you've used it for a while it'd ask you "Do
you want to support Overcast's development?":

/

It gives you the option to pay several different amounts of money (either
recurring or not) through an in-app purchase. Strikingly, the in-app pur-
chase doesn't unlock any new features. That's typical for patronage usually.
It just means you're now a supporter of its development. The feeling itself
is what you pay for.

This is incredible in so many ways. Just the fact that you don't need to
somehow trick people into unlocking features, but can ask them straight up
"Hey, do you like this thing I made? Support me making it please!" is magi-
cal. I don't think this would've worked a decade ago.

The issue is that asking users for money to support development goes
against the idea most of us have been brought up with about entrepreneur-
ship. You make a great product, there's demand for it, and people pay for it.
If people don't pay, it probably means the product isn't good enough (as the
market judged it and didn't want to pay for it, right?). With patronage, you
make a great product, people use it for free, and those who feel a personal
connection and are fans of it will pay you for it. This also means apps that
are so niche and would never get enough audience to be profitable to de-

/

velop suddenly become economical to build, as long as you can get enough
people to just support its concept.

Personally, in the early days of Nomad List, I actually tried this model and
it worked really well. I had a sign up page on Typeform and I'd ask:

People these days understand you are a human and need to pay your bills
(like them). And many are probably increasingly attracted by an authentic
request for money than a big marketing page with flashy buttons to unlock
the full version of your app.

It was an honest and frank request for money. It worked and people appre-
ciated it. It wasn't a big sales page (like I have now), it was just very basic.
Patronage has its time and place and for me in the beginning this made
sense. Now I feel I can make more money by in fact selling it as a big prod-
uct. But patronage bootstrapped the first year of Nomad List! When it
makes sense for you is up to you to judge. I'd try it for sure.

Subscription-based memberships

If you've heard about software-as-a-service (commonly abbreviated as
SaaS), you know why subscription revenue has become such a big deal in
recent years.

/

If you don't, it's the idea of offering your apps, not for sale, but for a sub-
scription that keeps going. Like your television subscription. If people stop
paying, they also can't use your app anymore. In return for paying, you
keep maintaining and updating the app and give them customer support.

Subscription (or recurring) revenue is somewhat of a holy grail for entre-
preneurs. Let's see why. We assume we have 1,000 customers per year and
they pay a single payment of $75, or in the second model, a subscription of
$75/year.

Single payment
$75

Subscription
$75/year

Year
1 $75,000 $75,000

Year
2 $75,000 $150,000

Year
3 $75,000 $225,000

Year
4 $75,000 $300,000

Year
5 $75,000 $375,000

What if you have a growing business and sales grow by 25% each year?

/

Single payment
$75

Subscription
$75/year

Year
1 $75,000 $75,000

Year
2 $93,750 $168,750

Year
3 $117,187 $379,687

Year
4 $146,484 $854,296

Year
5 $183,105 $1,922,167

See how fast recurring revenue grows? Obviously, this is without people
canceling a subscription (that's called churn). Let's be pedantic and add
churn of 7% per year. That means 7% of users cancel their subscription
yearly.

/

Single payment
$75

Subscription
$75/year

Year
1 $75,000 $75,000

Year
2 $93,750 $163,500

Year
3 $117,187 $356,430

Year
4 $146,484 $777,017

Year
5 $183,105 $1,693,897

See? Even with a moderate churn, it'll still grow much faster than a single
payment does. After 5 years of single payments, 25% annual user growth
and 7% churn you'll be making $1,693,897 of revenue! Versus only
$183,105 if you use single payments. The difference is $1,510,792. Recur-
ring revenue is very powerful.

There's a very good reason why entrepreneurs like this. It's easy to sell a
company like this. Acquiring companies love subscription revenue as it's
highly predictable and relatively stable. If you know the growth rate and
the amount of people canceling, you can evaluate the company easily and
in turn, value it with a good price.

/

From the customer's perspective, subscriptions might not be that great
though. People spend much more money generally. They often forget to
cancel their subscriptions and then they renew for another month or year,
meaning they overpay. It's hard to get that money back then. Actually, "for-
gotten subscriptions" are the elephant in the room of subscription-based
businesses, with some assuming up to 50% of subscription revenue are by
customers that don't even use the product anymore. Obviously, subscrip-
tion business owners are the last to discuss this. It's their cash cow. But it's
dark. A solution to this would be to specifically ask people to renew their
subscription or not after you detect they're not actually using your product
but are still paying for it. Nobody is doing this though that I know of yet.
Obviously. It'd instantly make the subscription model more healthy for
users, and still beneficial for businesses.

What should you offer as a subscription though? Well, anything really. Your
app. A service. A forum. A chat group. A social network for a specific niche
(like I did). Most apps people repeatedly use work with subscription rev-
enue. You might see a drop in sales though when switching to subscription
revenue because subscriptions require commitment. And not everyone
wants to commit to another subscription in their lives (besides Netflix).
This depends heavily on your audience. Personally, I have become a bit
tired of signing up for another subscription.

A good middle ground (that I use) is to offer besides subscription, also a
one-time-payment lifetime memberships for the predicted lifetime value
(LTV) of a customer. That means if you know on average your users remain
members for 2 years and you charge $100/year. Your lifetime membership
will be $200. That means you'll make the same amount of money as with
subscription, they just pay the entire amount up front.

Community model

Subscription payments work especially well with the business model of
building a community. What's a community? It can be a discussion board,

/

forum, chat group, social network to physical meetups. I do all of these
with Nomad List.

Communities are attractive business models because by default they're
niche. You make a community for travelers, or motorbike enthusiasts, peo-
ple who have horses, fans of Ariana Grande. Whatever. There's endless
niches to serve. They're also attractive because if you become the dominant
community in your niche, you have a monopoly and you can charge high
prices. As with social networks, communities have the famous network ef-
fect. The more people you have in a community, the more valuable it be-
comes (and the more money you can charge). Each user usually has a pro-
file like this:

Operationally communities can be run quite lean because community soft-
ware like forums is quite maintenance free, you might need a moderator
but that's it. On the other hand, you can go as big as you want. I started
with a chat, but now have a forum, a location-based social network and
physical meetups all over the world. The model is also highly relevant to
current time. People don't like to pay for content anymore, but they do like
to pay for connections, e.g. communities. Tech makes people more lonely
than ever, but it can also connect them to more people than ever. Your
community can enable that!

The story of Nomad List's paid membership community

In my case I built a community around digital nomads and travelers. And I
did it mostly accidentally.

/

I had launched Nomad List as a list of cities with some data on internet
speed, cost of living and weather. It then went viral. But the site was very
basic. I knew I was going to lose all these users because when you go viral,
it only takes a few days or so and you're gone. I knew to make them stick I
needed social features. But I couldn't code fast enough to build social fea-
tures into my site (like signing up, logging in). I thought, "okay, let's just
use other platforms for it, for now".

Back then, Slack was just taking off (~2014). I invited some of my friends to
seed the community:

I also added a big banner to the top of the site so that people could sign up
(for free back then):

A month later I added a discussion board (running on Discourse):

/

I could have never built a chat and forum myself this fast so it made sense
to use off-the-shelf tools.

My trick had worked, the social stuff had made the site a bit more sticky
and it was actually getting more popular! After a few months I started get-
ting lots of spammers in. The quality of users decreased due to volume. So I
thought, I'll just start charging $1 to remove spammers. It worked, the
spammers were gone but the quality of users was still not so high. I raised
it to $5. Then $25. Every time I raised the price I'd see a drop of users for a
week and then it'd go back up the same level of sign ups. I doubled it to
$50. With 10 people signing up per day, suddenly I was making $500 per
day, or $15,000 per month.

I had no idea what I just did. I wanted to stop spammers and increase the
quality of user sign ups. I did that, but I also suddenly monetized my site
and within days it became a profitable business!

Many people have followed this concept since and done the same.

You have a free basic app or site about a certain topic. People who visit
your site probably have the purpose of taking action based on what's on
your site. And because they're on the internet, they probably don't know a
lot of people in your niche. You provide free content, attract people and
then sell them a way to connect with people like them in your niche. By
building a community around your site's niche you give them a valuable
service, and you're able to monetize your audience instantly.

/

You can take this model and apply it to expats, illustrators, 3d modelers,
coffee baristas, Apple product fans etc. I like this model because it's valu-
able for you (your free product gets monetized with a community) and for
your users (they get connections out of it).

Job boards

This is similar to the community model. You have a free site about a certain
niche. Does that niche have its own industry with people working in it?
Like designers, developers, baristas, expats, anything really. If so, one of
your best ways to make money with it is to open a related job board besides
it.

Job boards work because companies pay a lot to find the right talent to
work for them. Especially tech companies. You charge companies to post a
job, like $49 or $99, $199 or $299. If you get just 10 job posts at $299, you're
making almost $3000/month. That's just 10 customers! Job boards are B2B
so you need relatively few customers and high prices to become profitable.

A good example is Dribbble, which lets people share their creative design
works in a show-and-tell-like platform. But they make zero money on this.
All their money comes from their job board:

/

A job post costs $299 for 30 days on Dribbble Jobs. They get about 5 per
day. That means they might be making $1,500/day or $45,000/month or
$540,000/year.

Start to see the pattern? You build something that's free, which generates
traffic, and then add something that's either valuable to your users or busi-
nesses that target your users and either one of them will pay for it. Which
lets you keep your free site up, which in turn generates more traffic when
you work on it.

Conditional payments

This is another interesting model that I tested myself.

With my app Go Fucking Do It, I asked people to set a goal, specify a dead-
line and enter their credit card details. If they did not reach their goal by
the deadline, I charged their card (automatically).

This is interesting because users don't specifically pay for a service or good.
They pay for failure. It uses money as a disciplinary tool.

I'm sure there are lots of ways you can evolve this model. One fitness app
did this by adding GPS and charging you if you didn't show up at the gym
every week.

So think of other ways how you can evolve this model. It simply means the
user doesn't necessarily pay for a product or service but you use their mon-

/

ey in a different more unique way.

Productizing an agency into a SaaS

This is not directly a monetization strategy but still important to discuss.
Many startups started as creative agencies. That means they built a product
for a single client, but then transformed that into a standalone product or
service (usually a software a service or SaaS).

A great example is Typeform. It was started by David Okuniev who was
working for a client at the time:

Typeform was born out of a client project (..)
[that] required us to build a lead generation
form that would sit inside an exhibition space
for a toilet company (..) we had to create
something more inspiring to collect data than
just a plain-old vanilla form, so we tried
something completely different."

— David Okuniev, founder of Typeform on Inbound.org

An even bigger example is Basecamp (previously known as 37signals).
They started as a simple web agency in 1999:

/

"37signals started as a manifesto in 1999. We
wanted to launch a web design firm that was
focused on clean, fast, usable designs, and our
manifesto was a series of statements covering
our feelings about web design. In 1999
everyone else was elbowing for the loudest,
brightest, most colorful, techiest "full service
end-to-end" site. We went the opposite
direction."

— Jonathan Kim on Quora

A decade later, they has so much experience working with clients that they
started commonalities between the problems they were solving for them.
They started building lots of small side projects to solve them. Most of
them failed or were sold, but now their only product Basecamp remains.
Some people now estimate their revenue at $168 million. That means a
small web agency, productized their client's problems into a million dollar
company.

An important side note here is to remember to make sure you own the
rights to the work you make for a client, so that you can actually transform
it into a business later. Otherwise, they'll be the owners of your future mil-
lion dollar company.

Learn from your competitors' business models

When you can't figure out any model that will let you make money, it's al-
ways a good idea to see how your competitors are making money then.

In general business theory, to compete with someone you either raise
prices and sell a better product (called the premium strategy), or you lower
prices, undercut them and sell an equal or lesser product but cheaper by
reducing costs (called the low-cost strategy).

/

See how Android took 80% of the smartphone market with a low-cost prod-
uct while Apple took the other 20% of the market with a premium product.
Apple makes more money with only 20% of the market than Android
smartphones with 80% of the market. Crazy? Yes! The point is, in most
markets, there's room for both a low-cost and a premium product.

Keep experimenting with business models

One of the best things you can do is, and that I haven't seen many others
do yet, is to continuously experiment with models to make money.

When launching a new product, I'll usually put a Buy button on it immedi-
ately. Just to see what happens. I'll make some part of the site exclusive to
paying users, or offer a service to businesses to reach my users in some
way.

And I'll keep putting those buttons everywhere. Because then I can see
what people are willing to pay for. I'll test prices, raise them, lower them.
You'll quickly see what works and what doesn't. And you can keep doing
this perpetually to figure out any new monetization models that may
appear.

When are you done monetizing?

This depends heavily on your objectives.

For many people, making just $2,000/month is a lot. I know it was a crazy
lot of money when I started out. But you have to consider income tax, cor-
porate tax, insurance and costs like that. It adds up. How much are you left
with after costs and taxes? Maybe $1,200/month. Can you live off that?
You'll probably need to make some more if you want to save money for the
future too. A business is risky, it might work for a year and then stop work-
ing altogether because the market changes.

It depends on your objectives

/

It's also about how far you'd like to go. And your personal situation is as
much a consideration as the potential of your business to go that far and
scale up. Scaling up will take high resources from you too and will reduce
the time you can spend with your lover, family and friends. It's always a
trade off.

How big do you want to be?

Do you think your app should remain a side project, or do you think it
should become a real business? Should it be a big company with 100s of
employees? Do you want to manage that? Then you need a lot more
revenue.

Look at your competitors. You're probably able to estimate how much mon-
ey they're making roughly with some back-of-the-napkin math. Are they
venture capital funded? If not, how many people do they employ? Make a
calculation of how much it costs to employ those people. Add some over-
head and you'll know a minimum of revenue they're making (if they're
profitable, that is).

If you get the same amount of users or traffic as them, but you're making
way less money, then there's obviously room for improvement in your
monetization.

If you get less users or traffic than them, figure out where they're getting
their users from. Google? Facebook? Referral traffic from certain websites?
Map it out like a secret spy agent and see if you can compete with them in
their own funnel.

Widen your market

/

If you think you've already captured most of the market and it's saturated,
see how you can widen the market you sell to. Can you make your product
broader and less niche? While Nomad List started as a site for digital no-
mads, now half the users are general travelers and expats. That market is
1000x bigger than the digital nomad market.

Grow the pie

Another way to get bigger is to literally grow the market you sell to. In
macroeconomics we call this "growing the pie", but that's on a national lev-
el. It applies to an entire market too.

Most Airbnb users never rented vacation rentals before Airbnb arrived. Va-
cation rentals were a dusty old market for retirees. By promoting vacation
rentals for young hip people, suddenly everyone jumped in and started
renting them. This didn't just help Airbnb, it helped their competitors like
HomeAway too. They grew the entire market pie to be bigger by making
people more aware of the industry, in turn, they were able to reach a lot
more customers.

Payment platforms

To monetize a site, you'll need to accept payments from your users. Luckily,
in the last few years there's been a lot of innovation in this industry. The
dominant payment platforms (at time of writing) are Stripe, Braintree and
PayPal. Braintree is now owned by PayPal.

/

It's always better to use a drop-in solution like these 3 than setting up
some big merchant agreement with a payment gateway or bank for just
your website. Even high-scale businesses like Uber and Airbnb use Brain-
tree. Other companies like Lyft and Target use Stripe. And companies like
Barnes & Noble or Abercrombie & Fitch use PayPal.

Stripe

Stripe revolutionized the online payment industry when it launched in
2011. For the first time, it let people accept payments with an API that was
simple (unlike PayPal's). They gave websites a drop-in solution where you
could just add some code and immediately accept payments. You didn't
have to fax or post 12 contracts signing your life away to a merchant pay-
ment gateway company (how it used to go), it just worked. Developers
loved Stripe (and still do).

Stripe is developer-first which means if you're building a website, app or
whatever software, they'll have some pre-written code for you to build
upon their API. One of their easiest products for newbies is called Stripe
Checkout which lets you add a Pay button to your site which then opens a
beautifully designed payment popup where people can enter their credit
card and pay you. You then charge the user, get a signal back that payment
went through and you can give the user access to your product.

Let's say you want to do subscription billing, and a user changes their sub-
scription from $25/month to $100/year in the 12th day of the 3rd month
they're a member. How do you calculate and pro-rate them? With Stripe

/

you don't need to. They have it all worked out for you. You just tell them
you sign a user up to a new subscription plan, then when they change it
you tell Stripe, and they'll charge the right amounts. It's magic!

With Stripe, you don't even store credit cards anymore. Which makes you a
target for hackers. They store them for you safely, all you save is a "token"
which lets you charge them money that can only go to YOUR account (not
the account of hackers). Instantly making it useless for hackers to hack
you.

Depending on where you live, Stripe may or may not be available (yet).
They're expanding worldwide though now. For remote workers it might be
interesting to note they're available in Singapore, a popular place for peo-
ple to register their companies when they're a nomad.

Braintree

Around the same time that Stripe launched, it got a competitor called
Braintree. It followed the same ideology. Make it simple and friendly for
developers to implement their API. They are highly similar too.

The greatest benefit to use Braintree over Stripe is that Braintree is avail-
able in a lot more countries than Stripe. This is probably because they're
now owned by PayPal which I think has banking licenses everywhere by
now.

PayPal

/

PayPal is one of the oldest and most famous payment solutions on the web.
And that's probably why it's despised by so many. Its technology is highly
archaic, outdated, its API is badly documented and subject to unannounced
changes at any moment and until recently their site looked and functioned
like an Egyptian tomb.

The great benefit of PayPal though is that is has very high conversion rates.
That's because people usually don't have to enter their credit card informa-
tion on your site but simply pay by logging into their PayPal account.

If you're North American, you think "why is this a big deal?". Well, most of
the world doesn't use credit cards like you do! For example, Dutch people
use a weird customized debit card system called Cirrus. Latin Americans
are culturally extremely afraid of using their credit card due to rampant
fraud. And most Germans use cash or will pay by a bank wiring system
called SOFORT. That's a lot of customers you won't reach.

PayPal enables those users to buy your product as they support most weird
national payment systems in the world. And as people don't have to enter
any payment details, it feels more secure to them. PayPal's buyer's protec-
tion usually favors buyers, which is bad for you, but great for users. All in,
these factors increase the odds that people actually go through and pay on
your site.

Recently, PayPal has started to rebuild their site, launched a modern app
and are generally on a spree to quickly modernize after years of engineer-
ing stangancy. This is directly because of Stripe entering the market. To

/

fend off Stripe, they acquired Stripe's biggest competitor: Braintree, which
they're slowly integrating into PayPal too. That's all good news for us mak-
ers, as there'll be more payment platforms to choose from. They're slowly
catching up again.

However, PayPal is not without its risks. Unlike Braintree and Stripe which
automatically deposit your balance either monthly or weekly, PayPal by de-
fault keeps all money in your balance. And they've been known to shut
down PayPal accounts with lots of cash in them when they suspect fraud.
They'll lock down accounts for weeks or months. If you use PayPal, make
sure you login at the end of every month, and manually deposit your bal-
ance to your bank account. Don't keep a high balance of money on PayPal,
it's a business risk.

Local alternatives

At the time of writing, Stripe is available in America, Canada, Western Eu-
rope and Singapore. Braintree is available in a few more. PayPal is available
in many more. But still, there's lots of countries where there's simply no in-
ternational payment processor. In that case, you'll have to consider local
alternatives. That means doing lots of Googling and research to figure out
which is easiest (and cheapest) to set up. It will most certainly be more
complicated and involve signing more paperwork than Stripe, Braintree or
PayPal. But you have no choice.

Stripe Atlas

An alternative is to open a company in a locality that does support Stripe.
Stripe itself introduced a service called Atlas which helps people from
worldwide open a simple corporation in the United States and in turn lets
them accept payments through that company. It might be worth investigat-
ing. Having a proper payment processor like Stripe will save you a lot of
time in coding payment logic, refunding and dealing with credit card fraud.

Use a combination of platforms

/

Instead of picking Stripe, Braintree or PayPal, you can also use a combina-
tion of the services. On many of my sites I show a modal that asks users:

[Pay by Credit Card]

[Pay with PayPal]

When one of these buttons it's clicked, you link them to the appropriate
platform. This gives your users more freedom to choose how to pay. And
gives you a higher reach of potential sign ups.

When I added this, conversion went up about 40% from ~ $10,000 to
$14,000 per month. Great! My bookkeeping become so difficult with PayPal
that recently I switched solely to Stripe just to make my life simpler. That's
the downside to it.

Use a Typeform to charge fast

What if you have an MVP and you don't have to time to set up Stripe,
Braintree, PayPal or another platform's code on your site?

You don't need to! Use Typeform. I talked about Typeform in the chapters
about building MVPs before, and it's very useful in this case too.

Typeform lets you connect your account to Stripe. That means you only
need a Stripe account, you don't need to code anything. All you have to do
is make a new form on Typeform, which asks the user for their name, email
and credit card information.

If users enter and pay, Typeform handles everything and you'll directly see
the money appear in your Stripe account.

Now if you have your MVP, you can simply add a Buy button that's actually
a link to the Typeform form you build and you have instant monetization!
If the monetization works (and your model is validated), you can always

/

build your own payment integration with Stripe on your own site without
the Typeform. But a Typeform is a good start when you don't have time or
want to code something yourself. Especially if you're experimenting and
validating what people would pay for.

How to deal with refunds?

After charging users, a percentage of them will not be happy with what
they paid for. And it's usually a small, predictable and stable percentage.

The worst you can do when a customer asks for a refund is to not give it.
You now have an angry customer. You don't want an angry customer, be-
cause they will talk about you on the internet. And they'll destroy your
product's brand. That means you'll get less future customers.

When a customer asks for a refund, say sorry that it didn't work out (and
mean it!). Then immediately refund them their money. Ask them why your
product wasn't what they expected. This might be one of the most useful
moments to ask for feedback as you might be able to avoid future refunds
to other users. This is not a bad event, see a refund as a moment of critical
feedback. It doesn't mean the customer will always be right, but it's impor-
tant to listen. You'll learn more from your angry customers than your hap-
py ones.

Another big reason to give a refund as quickly as possible is that these days
users can request a chargeback to their bank (sometimes within their
bank's app). This is the last thing you want. Chargebacks are payment dis-
putes between you and the customer's bank. They give your company a bad
reputation with your payment processor (like Stripe). And they cost money.
A regular chargeback means the entire amount they paid is refunded and
you pay a fine of $35 usually.

Now, as long as you provide a refund immediately, you just lose the money
that they paid, but nothing more. The payment is already refunded and
they can't initiate a chargeback. So it'll cost you less to refund! That's obvi-

/

ously why the banks have designed this system like this. It promotes re-
funds. Well, it's working!

How to deal with bookkeeping and tax?

If you've come as far that bookkeeping becomes a problem, you're probably
doing well. Having thousands of transactions coming in from countries all
over the world is challenging. Dealing with the right sales tax laws in states
(like US) and countries (like Europe) is difficult.

I recommend if you're doing over $50,000/year revenue to pay up to $5,000
for a good accountant that understands technology, business and startups.
Trust me, they're hard to find. Regardless of country, most accountants are
old and behind. My advice is, approach 25 different accountants and make
them do a quiz. Ask them what for example Stripe is, how to do sales tax
payments in different countries and how they would help manage your
thousands of annual transactions.

Not having an orderly bookkeeping can become a very big liability and bur-
den if you ever get audited. In most countries fines are double or more of
what you were supposed to pay if you didn't file properly. That can be a lot
of money. Additionally, you'll be on a list at your governmental tax organi-
zation that you broke the rules before, so you'll probably be audited more
now.

This is not a part of business you want to "save money" on. Pay a bookkeep-
er well! You need them to operate legally in the complicated environment
that having an internet presence where you sell worldwide is.

Where possible, try to automate your side of the bookkeeping before it ar-
rives at your accountant. That means, set up automated web hooks from
your payment processor (like Stripe) to sync transactions automatically to
a Google spreadsheet or database. Don't forget to also sync stuff like re-
funds. You want a ledger of all transactions that is always up to date. For

/

expenses, you'll want to save every single invoice you pay to a Dropbox
folder with the filename format

./Expenses/YYYY-MM-DD - Company -
Description - USD x,xxx.PDF

Try to limit your income and expenses to as few mediums as possible to
make your bookkeeping more simple. I only get money via Stripe now and I
spend it via PayPal or my business bank account card. That means I only
need to dump 3 data sources to get 100% coverage of my transactions. Re-
member, it's hard to get your bookkeeping perfectly accurate. You have an
accountant to help you with that and see if everything is done properly.
Keeping your finances simple should be priority.

Conclusion

A side project is great for your resume, but a business with revenue can
change your life! If it works out, it means you can quit your job. You can
hire people (or robots). Get an office (or work remotely from anwyhere). It
means you might be able to build a movement out of your vision. And that
can all start with a small little project. Everyone starts small. If you grow or
not often depends if you can make money and feed yourself (and the
company).

Money is like rain on plant seeds. It gives it nutrition to grow. Money
makes it possible to keep working on your project and pay your rent. If you
don't make money, your project will stay small, and you'll be bound to stop
working on it and quit.

If you'd like your project to become big, please, focus on monetization.
Remember:

/

An app without monetization is a charity

An app with monetization is a business

/

Resources mentioned

Patreon

Overcast

Slack

Discourse

Dribbble Jobs

Typeform

/

Your homework

From the business models mentioned in this chapter,
make a list of which ones might work for your product.

Pick one to start with and implement it. See if you're
getting payments after a few days. Keep adjusting until
the model works. If you're certain this model doesn't
work for you product, ditch it and try a different one
from here, repeat until you're generating revenue.

/

🤖
Automate

/

Introduction

If you've come this far, you've now build out an idea, launched it success-
fully, grew it to reasonable user base that pays you money every month or
year. We'll now see how we can remove you from the equation. How can we
make this business run itself with just robots (and some contractors)?

How is automation relevant?

You have money coming in but probably still need to do maintenance be-
cause things randomly break (they always do!). You might also still be
adding features every week. But at some point your app might be feature-
complete for most users. It does most of what it should do (there's always
more but let's set a limit). What's next then?

What's next is a personal decision as much as a business one. You probably
have been working on this product now for months or probably years. A
few years is a long time in a human life. We're more than our single busi-
ness. You might want to start other ideas. You might want to invest more in
your personal life: friends, family, relationships etc. That all makes a lot of
sense.

Here's where many people would say: "go hire some people to work for
you". Here's where I say: "avoid hiring, build robots". Hiring increasing the
complexity of your product, business and life. Hiring a person means you
need train and manage them and makes you liable for their income and in
many countries a lot more than just that (e.g. health insurance). Humans
are complex. They're also relatively slow. Robots can be simple. They're
also very fast. Most of the regular stuff to maintain your product can be au-
tomated as a scheduled computer script (run by scheduled cron jobs on
your server). Those scripts I like to call "robots". I have about 700 to 2,000
running depending on server load. They're such an important part of my
business I list them on my team page:

/

You'd be surprised what robots can do. Here's a few things my robots do for
me every second of the day:

Find cities that are popular on Nomad List in certain days, then find a
good Foursquare bar in the hip district and automatically organize
meetups for them on a Thursday, Friday or Saturday and promote these
meetups on Twitter, Facebook and Slack 1 month before, 14 days before
and a day before.

Find the weather, internet speed, air quality from 25 different sources
for 1,000 cities every hour of the day

Check if the server is completely up-to-date, if not, automatically
update if possible.

Notify me by SMS when anything breaks or doesn't work perfectly, like
the server using too much CPU, disk space, or showing lots of errors.

Go on Tinder (as a user), and see the most popular cities there every
week and add them to the database so that people can filter cities on
that on Nomad List.

Browse 100+ job boards for jobs that can be done remotely, and parse
the job position, description and company to see if it's a remote job or
not, if it is, post it to Remote OK and share it on Twitter and Facebook
and send it out to people subscribing to email alerts for that specific job
tag (like JavaScript).

/

Browse my city pages and screenshot part of them to make city
thumbnails so that if people share a page on Twitter or Facebook it
shows a picture of the city with data printed on it.

Check every day if there are deadlines passed on GoFuckingDoIt.com
and email the supervisor of the goal set if the person really passed their
goal, give them a link to click if they didn't pass the goal which if
pressed lets the robot charge their credit card for money.

More personal: Login to my smartphone telecom provider, download the
invoice, print is as PDF and email it to me. Send a copy to my
spreadsheet robot who automatically enters it into my bookkeeping.

What's a robot really?

A robot for me simply means a task I used to do myself, that I wrote a script
for, then scheduled to run every second, minute, hour, day or week. My
robots are written usually as simple PHP scripts that are run in the shell,
but I also sometimes use JavaScript on the server for it (with ExpressJS or
PhantomJS). It doesn't really matter how you do it. If you can make a script
that does something and saves you from doing that task, that's a robot.
Here's my server dashboard (called cron) with some of my robots scheduled
(the /srv/cronlogger is simply an app to log the result of the scheduled job,
the stuff after php is actually the script being run):

/

There's even services that will monitor if your scheduled cron jobs actually
run like Cronitor:

A robot doesn't have to be a script you write though, as mentioned before
Zapier lets you set build entire automated workflows that can do pretty
much anything you can think off that a human normally does. Like check
your emails on Gmail, filter out specific messages, process text from those
messages, charge them on Stripe, send them an SMS via Twilio's API to a
another person and invite them to your Slack with their API. A workflow on
Zapier is as much as robot as the scripts I write.

Don't automate if it's not worth to automate it

As much as I believe robots are quite unlimited, how much effort you want
to put in to make them advanced like humans is your decision based on
how much time you have. There's a famous trope of programmers automat-
ing everything but then programming the automation script takes longer
than the time it saves. That's bad! You want to automate parts that take
quite some time for a human, but don't take too much time to script.

What if the robots can't fix things themselves. How do the
robots ask the humans for help?

If you have humans on standby, how do you make sure the robots can fig-
ure out something is not right and call in human support troops? There's

/

lots of ways. You can build your own robots that check if things are running
properly. For example, a script that opens your website, checks for a certain
keyword and if it's not there (which means the site is broken maybe?)
emails you.

What if you want it to alert you by SMS? Twitter DM? Facebook? There's a
fabulous app called UptimeRobot.com that does just that. Here's my dash-
board there:

These are all little alerts that check something every minute or hour de-
pending on importance. Like one alert visits the page on Nomad List for
"safe cities in Europe with good health care". I know that Amsterdam
should probably be on there, so if Amsterdam is missing it means the filters
are broken or something more severe is going on (like the page not load-
ing). You simply test for the expected value (Amsterdam) for a specific
query (safe cities in Europe with good healthcare).

Where do humans fit in here?

For the things that take too much time to program automation for, it might
be useful to just get a human to do it. In my case, there were a few things I
really couldn't automate away. I've made most of my customer support au-
tomatic: a user can sign up, cancel their account, get a refund, change their
subscription plan, change their credit card etc. all with a self-help dash-
board. But sometimes you have users falling in between the ship and the
land (that's a Dutch expression). For these edge cases you want a human on

/

standby to solve their issue. This is how a typical white hipster human
looks in 2017:

This human needs basic skills like communicating with a customer, going
into your users database to fix things and if they really can't resolve it con-
tact you to solve the underlying problem. If you have enough stuff happen-
ing, you can also pay them a monthly lump sum like $2,500/m (that's what I
do with my customer support) and just be done with it. I don't like to man-
age humans, so I like to work with people who are highly autonomous.

Another way is paying a human to be somewhat on standby based on when
something happens and they have to deal with it and they log their hours
and just invoice you through PayPal: that's what I do with my developer on
standby. They get an alert when something doesn't work, and if they fix it
first (before me), they invoice me for the hour worked (I pay $50/hour and
up).

You're laughing about how I talk like humans as just modules in your busi-
ness. But anyone who portrays they're not is lying. If the goal of your busi-
ness is revenue, then a human equals a robot. You put energy/money in it,
and it gives work as output. Easy. (the social implications of humans being
used as modules and becoming unemployed by automation will require ba-

/

sic income which I'm a big proponent of, but that's a story for another
book).

Where do you find humans? I usually hire my friends as temporary contrac-
tors, but you can also try sites like Upwork.

So this is like passive income, right? No!

By fully automating the parts that are worth to automate and getting con-
tractors to do the stuff that are not worth to or can't automate, you now
have built a machine that just runs and pays out money without you having
to work on it. People would call this the magic "passive income" but I think
that's a ridiculous term. You probably had to work 3 years on a crazy hard-
core level to get to the point where you can automate and not work and
make money. Then the question is how long will that last? Maybe another 3
years? So it's more like the first 3 years you just worked as hard as someone
working 6 years normally. That's not passive income, that's just compressed
income. Passive income is a myth. You can minimize work a lot, but until
you sell your company, there will probably always be at least monthly situ-
ations where you need to step in.

If you've come this far with your side project, which is now a real business,
it means you're near to having an autonomous organization. With Bitcoin-
type blockchain technology like Ethereum, we can build so-called DAO's
(or Decentralized Autonomous Organizations). This is very new tech but
the philosophical concept behind it is very interesting. You have companies
that run virtually in the cloud, are owned by people that can trade stock in
them and can get paid out dividends. Just like real publicly traded stocks.

The "bus test"

Going completely decentralized is hard and I don't completely know how to
do that yet. But I do know the way towards an almost fully autonomous or-

/

ganization. You'll need a mix of robots and humans to run it. If this works it
means you pass the "bus test":

"A thought experiment which explores the
impact of losing a person: If a particularly
empowered individual in an organization is hit
by a bus, will the organization suffer greatly? If
yes, fail. If no, pass."

— Urban Dictionary: "bus test"

Ask yourself, would you pass the bus test? Transforming your product into
an autonomous organization means you will.

Here's a rough set up to make your product into an au-
tonomous organization:

Automate repetitive work with robot scripts

Hire a dev ops (or sysadmin) person on a contract-
basis (preferably hire 2 so you have a backup).
They'll be the manager of the bots, kind of

Set up alerts (like with Uptime Robot) so your devs
are alerted if your product breaks

Hire one part-time or full-time contractor who has
access to your PayPal or bank and can manage and
pay your devs (doesn't have to be technical
necessarily). They're like the executive.

Find one or two people that can be somewhat like
"the board". They check if the executive runs your

/

company as you would have wished.

If you'd like, you can prepay balance to your hosting
company (as I do with Linode) and domain name
company (as I do with NameCheap), to prepay the
costs for a few years. This will likely mean depositing
$1,000's with them, but it means you're sure keeping
your product alive isn't dependant on your credit
cards existing.

Conclusion

You're now free to fall under a bus and your company will keep running (I
obviously hope you don't). Even better, if you don't fall under a bus you
now have a lot of free time to do other stuff! You've reached the holy grail
of building a product: nearly passive income.

Nearly, because again, passive income doesn't really exist. There will al-
ways be small things. But luckily, you can get other people to manage most
things for you. And in turn they can get bots to manage most things for
them. Only in the most extreme cases, you're alerted for issues. That means
you can focus on spending more leisure time with your friends and family.
Or making new projects and bankrolling them with the cash flow from this
project.

The benefits of a clear mind are underestimated. Running a business is
stressful. An entrepreneur's mind generally doesn't stop after work hours.
New ideas, new solutions to challenges, they'll come up any time. That
means they're not the nicest people to be with. But automation gives us a
chance here to change that. Stepping away from the business when it's ma-
ture and having robots run it is one option. And it's an option I chose, and I

/

think will be increasingly the norm in the future. Automation seems very,
very obvious.

/

Resources mentioned

Cron

Uptime Robot

Upwork

Zapier

Decentralized Autonomous Organizations

Ethereum

/

Your homework

For a week, monitor your own workflow and write down
a list of tasks you are repeatedly doing more than a few
times per week.

From that list, rank them by how easy it would be to
automate those tasks or part of it.

Start with automating the first few tasks and see how far
you get.

See which one of your repetitive tasks are absolutely not
automatable, but would be easy to hire a contractor to
do for your instead. If you need, you can add some
automation to give the contractor the task without you
having to do anything. For example: if a user sends a
support message that you detect needs a human to
respond, filter it out automatically with Zapier, and then
forward that message to your contractor. If you want,
browse Upwork and find a contractor to start doing a
few of these basic tasks for you.

/

🚪 Exit

/

Exit
In the last 4 years, I've received tens of offers to buy my
companies/webites. And if you make anything worthwile, you will (or have)
too! Only a single offer I got actually proceeded into serious discusssions:
negotiating a price, signing NDAs, due diligence (checking the books) and
exchanging of banking details for the transaction. The price was in the mil-
lions of dollars. And it would change my life.

During that process (which took 6 months), I learnt a lot about the process
of selling your company and the psychological effect it can have on you to
learn you're going to receive a lot of cash in your bank.

When we were close to signing the deal, I rejected it, because I didn't like
the terms which would require an earn-out (I'll explain what that is later).
What I learnt into those 6 months, I want to tell you in this chapter. So that
when you get an offer, you know what to do, how to value it, and how to
continue with it.

I have to be clear though: this is the only part of the book I didn't complete
myself (yet). Some people on Twitter said I shouldn't write it for that rea-
son. But that'd mean not sharing the experiences I had. So I'm writing it
down for you anyway. Let's go.

Introduction

/

The dream of a startup founder can often be
summarized by the following well-intentioned,
and mostly delusional, quote: “We’ll raise a few
rounds and in a few years we’ll IPO on
Nasdaq.”

— Tech Crunch (2008)

The befamed "Exit". Hollywood has glamourized building a Silicon Valley
startup and selling it while minting its founders as new billionaires.

But is that narrative accurate? What are the odds and how does the process
of an exit look? In this chapter, I'll discuss selling your company. We mostly
know about big venture capital funded startups being sold for billions.

What most of us don't know, is that non-VC funded bootstrapped compa-
nies are also sold, often for millions of dollars and sometimes for hundreds
of millions of dollars:

On Tuesday, the dating website Plenty of Fish
got acquired by Match Group, an
IAC/InterActive subsidiary that recently
announced plans to go public later this year.
Plenty of Fish sold to Match Group for $575
million in cash. (..) "By the time I found out
what VCs were, I was already making millions
in profit, and I didn't see the need to raise
money because I wouldn't know what to do
with it," he told Business Insider. "It was a
profitable company, and there was no need to
raise money."

— Business Insider (2015)

/

First contact

You'll probably start thinking about selling your company after you get
your first message that someone is interested:

Usually this happens from an email, a tweet or direct message. If you want
to make sure you get these messages, keep your email somewhat public
(like on your website), and your direct message inbox open to the public.
Although if someone really wants to buy or invest in your company, they'll
find a way to reach you, as the investors in Whatsapp did:

Now around that time, Jim Goetz from Sequoia
Capital was desperately in search of the
founders. They had originally discovered
WhatsApp through an App store tracking
system they had developed for their assistance
called ‘early bird’. (..) it literally took months
for the VC firm to trace [Whatsapp] down,
given that the company didn’t have a publicly
available address at the time. They eventually
found the WhatsApp founders when [they]
started searching for them on the streets of
Mountain View.

/

— Bikash Kampo on Hanker Visionary (2018)

Now there is many ways to go about this. When receiving a message that
someone wants to acquire your company, your first reaction might be emo-
tional: you're excited. This might mean all the work will pay off in a large
sum of money, right? But that's a very naive and optimistic mindset. More
realistically, most inquiries to acquire your company won't go through.
From my own experiencs I'd estimate about 1 in 100 inquiries actually goes
through.

Types of buyers

Deadbeat non-serious buyer

These type of bidders aren't serious and will contact you to buy your com-
pany for a price that's often 100x to 1000x less than the market value.

I've had people DM me to buy Nomad List for a few thousand dollars, when
it was making $300,000+ per year. It's best to just ignore these as they
won't lead to anything, obviously.

I'd argue 90% - 99% of messages you'll get are non-serious buyers.

Competitive snooper

The process of acquisitions is often used to acquire competitive
intelligence.

That means competitors often, willfully or not, lead you into an acquisition
process, get you to share the intricate private details of your business
(called "due diligence", more on that later), but then backing off somewhere
in the process (usually at the end).

During this process, they've learnt a lot of private information about how
your business is performing, its strengths and weaknesses, who your cus-
tomers/clients are, and more.

/

It cost them nothing to do this, but it cost you a lot of work (and mental
stress of ups and downs) going through the process of almost selling your
company. It gave them competitive intelligence (for free!), which they can
use to better compete with you and potentially crush your business.

Fake acquisitions to get competitive intelligence is so often used, and hard-
ly any founder I talked to knows this happens. The first thing they think is
"omg I'm going to sell my company and get rich", and they do whatever the
other party asks. Don't fall for this.

A good way to avoid this is to set a breakup fee before starting talks:

A breakup fee (sometimes called a termination
fee) is a penalty set in takeover agreements, to
be paid if the target backs out of a deal (usually
because it has decided instead to accept a more
attractive offer).

— Wikipedia (2019)

So that when the acquisition bounces off, you're still paid money. This
stops non-serious bidders, and gets you paid for the competitive intelli-
gence you do share. Big companies do this all the time:

AT&T and Deutsche Telekom, the parent
company of T-Mobile, said it tried to find other
ways to salvage its deal but ultimately agreed
to break it off. The penalty for AT&T was a
penalty fee valued at $4 billion in cash and
airwaves.

— The Washington Post (2011)

/

In the above case the $4 billion breakup fee was for an acquisition worth
$39 billion or about 10%. There is no real standard but generally break up
fees are 1% - 3%. Then again, that seems quite low to me. If a party is seri-
ous about buying, I'd just ask a 10% breakup fee just like the big companies
do. You'll be sure it's a serious party.

String-you-alonger

This is a legendary type of character, not just in acquisitions, but generally
in business.

They'll want to schedule a call to discuss, usually not in your timezone so
you have to call them at some ungodly hour, then when you wake up for
that they'll reschedule it to next week or next month. Then reschedule
again.

They're not serious buyers, and merely filling their schedule as middle
managers at some tech company because they don't have anything better
to do.

The best way to deal with these is decline any calls, and require them to
communicate only by text. By text their whole theatre show falls apart be-
cause text is concrete.

Serious but formal buyer

This is a nice type of buyer, because they're serious. These are usually big
traditional enterprise companies with lots of red tape (bureaucracy).
They'll ask you to sign NDAs, legal agreements and more contracts, but if
they're serious that might be worth it.

It's not my favorite type of buyer, because all this formality has a lot of
costs (mostly in time and lawyer fees) and also implies a lack of mutual
trust.

Serious and informal buyer

/

This is the best type of buyer. And most easy to recognize. They'll be
friendly, concise in their communication (e.g. clear, short messages) and
very willing to buy. Their process for negotiating and purchasing will be
simple and usually in your favor.

Even BigTech companies (like Google) can often be informal buyers, they'll
really want to buy you and there'll be a good amount of trust. And they'll
try to reduce the formalities to the minimum for you.

This type of buyer is a tiny percentage of the amount of inquiries you'll get.
I'd recommend to ignore there rest and wait for this one, as it's serious and
you won't be wasting your time.

Buyer odds

This means the amount of messages you need to dodge before getting a
single serious buyer is something from 20 to 100, which means 95% to 99%
of messages are useless. Again, these are my rough guesstimates, each type
of business and industry can be different of course.

Using a broker

Many people suggest to use a broker when selling a business. There's some
benefits to this: Instead of having to do everything yourself, you can keep
working on your business. A broker usually already has a network of buyers,
and has the resources to actively find buyers. Like a real estate agent, a
broker is also an expert on showing your business in the best way possible
because they now what buyers are looking for; whereas you might not. A
broker can also help to properly valuate your business, since they sell a lot
of companies regularly, they will know the fair market value for your busi-
ness pretty well. A broker also can help you avoid the legal pitfalls of
selling.

But there's negatives to using a broker too. A broker obviously costs money,
and they usually charge 10-15% of the selling price. This means you get 10-

/

15% less. On $1M, that can be $150,000. Quite a lot. They also usually
charge the buyer a fee, often 2.5%. A broker also has a short-term mindset,
they want to optimize for selling your company so they can get their com-
mission. Meanwhile, without a broker, you can be a lot more long-term and
relaxed about it giving you a better negotiation position: you don't need to
sell, which may give you a higher selling price in the long-term.

If you use a broker or not is really up to you to decide depending on your
circumstances and skill. If you think you're smart enough that can do a deal
yourself, go for it. If you're less confident, get a broker to help out.

The most well-known brokers right now are FE International (FEI) and
Empire Flippers. I've heard generally good stories about both.

Negotiating a price

Bargaining power

There's a million different opinions, strategies and studies on what the best
negotiating tactic is. I don't know which is right.

I do know that it heavily depends on your bargaining power at the table. Do
you need to sell your company? Do you want? Do you have enough money
coming in to not have to sell your company?

/

The best position to be in is not actually wanting to sell your company. You
can set an extremely high price because you don't have a big intention to
sell anyway. If it happens and you get a high price for it: sure you'll do it.
But if not: no worries.

The worst position to be in is actually wanting to sell your company. This
happens for example when your company is losing money, you're going to
have to close it down soon, or you're just sick of running it after years.
You'll accept a lower price to get rid of it because you want to get rid of it.

To open or not to open with a price

My personal opinion is when negotiating to not open with a price, but in-
stead let the buyer do a first bid, to figure out if they're serious or not. Es-
pecially with anybody being able to send you a message on the internet,
you'll get so many non-serious offers, that asking for a price acts as a great
filter to keep the serious offers.

The challenge is that most people will want to know more about your busi-
ness first before doing a bid.

Price aggressively high

Some studies say you should open with a price because it anchors the price.
This anchor will influence all the bids that come after. If you do choose to

/

open with a price, open with an aggressively high offer (in this case 10x
revenue):

This is supported by scientific research on business negotiations:

/

Those who lack power, either due to a
negotiation's structure or a lack of available
alternatives, are less inclined to make a first
offer. Power and confidence result in better
outcomes because they lead negotiators to
make the first offer. In addition, the amount of
the first offer affects the outcome, with more
aggressive or extreme first offers leading to a
better outcome for the person who made the
offer. Initial offers better predict final
settlement prices than subsequent
concessionary behaviors do. (..) How extreme
should your first offer be? My own research
suggests that first offers should be quite
aggressive but not absurdly so. Many
negotiators fear that an aggressive first offer
will scare or annoy the other side and perhaps
even cause him to walk away in disgust.
However, research shows that this fear is
typically exaggerated. In fact, most
negotiators make first offers that are not
aggressive enough.

— Adam D. Galinsky, Harvard Business School (2004)

Valuating your company

But how do you know what's a good price for your business or product?
Well, there's two ways to go about it. First, any price you think it's worth,
even if that's a trillion dollars, is a fair price because you think it's worth
that. That doesn't mean somebody will pay that for it though. But it's up to
you to set the price.

Multiples of revenue

/

More practically, there's a lot of industry data on how to price companies.
For internet companies it's common to price primarily by revenue and
growth rate with something that's called a multiplier. The multiplier is a
number you multiply revenue with to get a selling price. This makes sense
because when selling a company, you're selling the expectation that the
company will keep making money in the future. If you can show growth,
there will be the expectation that the company will be making MORE mon-
ey in the future, which means a higher selling price.

— Tomasz Tunguz (2016)

As always, opinions about what's a fair multiple based on revenue and
growth rate vary broadly. The chart above by Tomasz Tunguz is an example
of one perspective for SaaS (software-as-a-service) business valuations by a
VC. It seems pretty accurate to me.

Let's say you have a company doing $100,000 in revenue per year. Last year
you did $75,000 in revenue. That means +33% growth YoY (year-over-year).
If we look at the chart, that's somewhere around a 7x multiple. That's
$700,000.

$700,000 is a lot right? But also not if you consider that if your growth rate
remained the same, you could just sit and wait for a little over 4 years and
you'd make the same in revenue ($100,000 for 5 years at 33% growth rate =
$100,000 + $133,000 + $176,890 + $235,263 + $312,900) AND you'd still be

/

owning your business, which would then be worth $2,190,300 at the same
7x multiple. So you're getting $700,000 today, but you won't get revenue for
the next 5 years of ~$958,053 + $2,190,300 = ~$3.1M.

Although this is a very optimistic scenario which implies that your growth
rate stays at 33%. Most new companies don't even survive for over 3 years.

Selling your company is less glamorous than it sounds. What you're really
doing is making a simple transaction of selling your (high-risk, high re-
ward) cash flow ($100,000/year) in return for (low-risk, low reward) cash
($700,000 once). This gives you the benefit of derisking (you get cash) with
the downside that your cash flow immediately ends. Not many people
think about it in this way, but just see the shiny selling price. Remember,
you stop making money from your company after you sell your it. It's not
your company anymore!

After you sell for $700,000, putting that lump sump of cash in a diversified
stock portfolio or ETF may give you 7% return per year. That's "only"
$49,000/year vs. the $100,000+/year you were making before.

Note: these are highly simplified scenarios. To get a real comparison, con-
sider company operating costs, tax, etc.

Seller's Discretionary Earnings

Valuations do get more precise than just revenue and growth: important is
also how much costs you have, and thus your profit. A high profit margin
business (with few costs) is obviously more attractive than a low profit
margin business (with lots of costs).

A related term often used to valuate small businesses is seller's discre-
tionary earnings (SDE). SDE means what is the seller actually earning. You
might be making $100,000/year, but how much would you make if you'd
pay yourself an industry salary? And how much are the real costs of your
business that you don't necessarily write off on your business right now?
What do you code your website on? Your laptop? How much did that cost.

/

Etcetera. SDE removes all those costs from the revenue to get the real earn-
ings the new owner can expect if they have to make the same costs as you.

For example, you make $300,000/year with your app and you do everything
yourself from programming, to design, to marketing. You host it for free on
your friend's server, so that saves money. You take home most of the
$300,000/year.

But if someone buys it, they'd probably have to hire at least a programmer,
designer and marketing person. Add the hosting costs (since they can't
host it on your friend's server anymore). A programmer, designer and mar-
keting with overhead could cost $300,000 by itself. Hosting could cost
$5,000/year. That means if you measure your company by SDE, it's actually
a net negative business. A seller would lose money buying it.

I don't think SDE is a particularly useful metric for seller's though as it
mostly just reduces the negotiating power for you. For most entrepreneurs,
SDE has a negative result because they're used to doing a lot of stuff them-
selves (DIY) without charging for it. Most starting entrepreneurs I know
don't even take out salary!

Keeping valuation more general with a revenue and growth-based multiple
seems more in your advantage if you have strong bargaining power in the
negotiations. SDE is an interesting concept to think about regardless if
you're selling or not. You might be working really hard, think you're making
a lot of money but actually be losing money in pure economics!

Industry-based pricing

Similar to how real estate agents valuate houses by looking at what other
similar houses in the same street or neighborhood recently sold for, valua-
tions for companies often work the same.

Have other companies in your industry recently (this year) sold? For how
much? And how much bigger or smaller are they than you in terms of rev-
enue and growth rate? Use that as an indicator to value your company.

/

Negotiating other details

Just a price isn't the whole story. There's a lot more to it:

Cash or stock

Are you getting the full amount paid in cash? That is, an actual bank trans-
fer of the whole amount to your bank account? Or are they paying you in
stock in their company? Or is it a % mix? Big tech companies like Facebook
and Google usually pay in majority stock, which can be quite lucrative in a
rising market. And since these companies are already on the public mar-
kets, you can easily sell their stock and get cash back, essentially on the day
of the sale when you get them.

You have to be careful with private companies wanting to pay you in stock.
It's often impossible or extremely difficult to sell stock in private compa-
nies. There's not a really liquid market for it like the public stock ex-
changes. There is sites like NASDAQ Private Market (formerly Second-
Market) to sell private company stock, but then you don't really know how
much people will pay you for it, as prices can vary greatly.

The best and most simple deal in most cases for you is a full cash acquisi-
tion. You can decide what to do with that cash later, like put in a trading
account or ETF index fund. Instead of having stock in a single company,
which is not a diversified investment strategy and therefore highly risky.

Tax

Remember that you will need to pay tax on the money you get. As I'm not
an accountant and fiscal laws differs by country, it's always best you talk to
an actual accountant experienced in this to figure out the best strategy to
legally minimize the impact of tax on an acquisition.

Again it differs by country, but usually the worst thing that can happen is
have it recorded as a single year income, which will be taxed in the highest
bracket.

/

Earnouts and why they're bullshit

Earnouts are bonuses you get where you set an acquisition price but a % of
that price has to be earned after the sale based on certain targets. For ex-
ample, you sell a company for $1,000,000. You get $500,000 in cash today
and $500,000 is an earnout if in one year from the sale you reach a revenue
of $250,000.

This earnout can also be gradual where if you reach $200,000 in revenue
you might get $400,000, instead of $500,000.

The problem with earnouts is that it means you'll definitely have to keep
working for your own company (that's not your company anymore) for at
least the time of the earn out (usually a year). But worse is that since the
company isn't yours, the new owner can actively sabotage you from reach-
ing the targets set, to avoid paying you out. Then when the earnout ends
(after a year), you're out, and they can stop sabotaging and reach their tar-
gets. This means they get a giant discount on buying, while actively sabo-
taging and misleading you. This has happened in acquisitons before.

An earnout is usually never worth it and shows a disrespect from the buyer
for your time and investment. In short, earnouts are bullshit.

Asset purchase agreement or company sale?

You've probably been thinking of the legal transfer of a company when
somebody sells a company. With smaller busineses, realistically it often
goes by what's called an Asset Purchase Agreement. This means that in-
stead of buying the legal company, they just buy the relevant assets of the
company.

Relevant assets in an internet business practically means, they're buying
the website source code, the brand, the logo, the intellectual property, the
domain names, the hosting accounts, Google Analytics accounts and ac-
counts of any other services you might use (like SendGrid for email). They
also take over your customer and email newsletter list. Any thing that's rel-

/

evant and required to continue running the business as you did before will
be part of the asset purchase agreement.

Generally for smaller companies, an asset purchase agreement is legally so
much easier. For bigger companies, buying the entire legal entity is more
obvious. But that requires lawyers and has more legal pitfalls.

Non-compete agreement

Many buyers will want you to contractually agree to not compete with
them for a certain number of years.

For example, if you're selling a remote job board, the buyer doesn't want
the moment you sell it, to just build another remote job board. As that
would instantly become a competitor of the company they just bought, de-
creasing its value.

Make sure the non-compete is not too wide. Agreeing not to build another
remote job board makes sense. Agreeing not to make another business in
HR recruitment seems to broad and doesn't make sense.

Indemnification of liability

Indeminification of liability means to be kept clear from any future legal
liabilities rising from the product or company.

Generally, both the buyer and seller want to be kept clear from any liability.
The buyer will argue that the seller created the product/company and is
therefore responsible for what may arise later from the current state of the
product.

But the seller argues that they sell the company, and that's the end of the
story. They don't want to be hassled with a lawsuit in 5 years after a sale,
when they have nothing to do with the company any more.

So the question is: who should be held responsible when an unexpected li-
ability happens? There is no right or wrong answer, it depends on the deal.

/

It's a difficult part of negotiation. And it's important to consult a lawyer
here. Because if you do this part wrong, it might mean you're on the line for
unexpected legal liabilities years from now arising from the company you
sell today.

Letter of intent

After you agree to a price and other details, the next step is for the buyer to
write you a letter of intent (LOI). This is a non-legally binding (which
means you can't enforce it in court) letter that puts on paper formally some
of the details of the deal. It's a proposal, not much more.

A letter of intent usually describes:

The price of the deal, if it's in cash, or stock

If there's a earn-out involved, meaning you receive a bonus if certain
(revenue) targets are met in the future

If it's an asset purchase or purchase of the company as a whole

Timeline of due diligence

Non-compete agreement

Indemnification of liability

Preparing your company for acquisition

Structuring of your company before sale

How you structure your company before selling it might give you some le-
gal benefits in terms of paying tax. For example, if your company is owned
by a holding company that you own, the income from the sale might be
only taxed as a corporate sale. If your company is owned by you directly
and you sell it, you may be taxed based on personal income tax, which can

/

be much higher. Whether structuring it like this is legal and beneficial
completely depends on your country's legal and fiscal system, which is why
you should consult a fiscal advisor before you go through with a sale.

It also makes sense to consider where to establish or move you or your
company to before even considering selling it. If you're in the U.S., there's
50 states with 50 different tax systems. Meanwhile if your company is fully
remote and online, it makes sense to establish it in the most attractive
place for business. For startups, the best, most fiscally attractive and still
legit places seem to be Delaware, Singapore and the UK.

Check your code licenses

When I started writing on this chapter Felix Krause (from Fastlane) sug-
gested to discuss code licenses related to selling your company. A lot of
open source code has a GPL license. This license requires you to open
source all your code to even use any GPL licensed code. Many people
disregard this legality and still use GPL licensed dependencies. But when
selling your company that becomes a legal liability which you definitely
have to disclose to the buyer, and preferrably have to fix by taking out
those dependencies and replace them with business friendly licensed de-
pendencies (like MIT, Apache or BSD) instead.

Felix Krause made License Checker for Ruby gems, to quickly get a sum-
mary of what licenses are in use in your code. If you use PHP, there's PHP
Legal Licenses and for JS there's NPM License Checker.

Tidy up your bookkeeping

We all strive to have a tidy bookkeeping at all times, but a lot of the time
resources are tight (especially time) and business gets in the way. Avoid do-
ing it yourself: I've tried many times, and it's just not worth our time. Pay
someone good to do this for you. It's worth it. When selling your company,
it's important to have your bookkeeping tidy or you will severely delay the
due diligence process. It'll also make you and your company look messy: if

/

the bookkeeping isn't in order, what else is wrong that the buyer doesn't
know about? They might back off for that reason. Get an accountant to go
over it and tidy it up, and keep it tidy.

Due diligence

Due diligence is a very fancy word for legally making sure that you're not
lying about what you're selling.

"Due diligence is the investigation or exercise
of care that a reasonable business or person is
expected to take before entering into an
agreement or contract with another party, or
an act with a certain standard of care. It can be
a legal obligation, but the term will more
commonly apply to voluntary investigations."

— Wikipedia

In the case of startups, due diligence usually involves a financial audit
where you show a profit & loss statement and bank statements, and give
access to your merchant processor (like Stripe). As well as a technical audit,
where you explain the tech architecture of your app, dependent services
you pay for (like SaaS).

Purchase

Escrow and holdback escrow

When agreeing on an acquisition, the actual purchase and transfer might
happen through escrow. Escrow means that a third party (not you, and not
the acquirer) holds the money until all the agreed-upon details of the ac-
quisition are completed. This protects both the buyer and seller. The buyer
makes sure that what they agreed to buy is actually what they get and the

/

seller makes sure that the amount of money (or other types of payment like
stock etc.) tehy agreed to sell it for is actually what they get. When both of
these are verified, the third party escrow releases the money.

In some acquisitions, you might also have a holdback escrow. This means
that a portion of the purchase price is held back until further conditions are
met. These conditions are again negatiotated and agreed upon when ac-
quiring. This can be an earn out or liability protections, for example in case
your company that you just sold is sued after you sell it. Which the buyer
doesn't necessarily want to be responsible for.

If there's enough mutal trust, and if it's an asset purchase agreement, it
might just literally be a single bank transfer from their bank account to
yours.

Post-sale

Celebrate

You worked your ass off for years to be here. Most people fail and don't
even get to this point. You did it. Be proud. And importantly: celebrate. And
I mean that. This is a major life event for you, and the ritual of celebration
is beneficial to your mind to demarcate this point in your life. Just like a
graduation ceremony or wedding does. And science backs this up:

/

"Recent research suggests that rituals may be
more rational than they appear. Why? Because
even simple rituals can be extremely effective.
Rituals performed after experiencing losses –
from loved ones to lotteries – do alleviate grief,
and rituals performed before high-pressure
tasks – like singing in public – do in fact reduce
anxiety and increase people’s confidence.
What’s more, rituals appear to benefit even
people who claim not to believe that rituals
work."

— Francesca Gino, Michael I. Norton in Scientific American

Emotional fallout

As hard as it is to believe when thinking of suddenly getting lots of money
transfered into your bank account and not having to work anymore, it can
ironically have negative effects on your mental state. And we have real
world examples of it:

When Markus Persson (or @notch), the creator of Minecraft, became a bil-
lionaire overnight selling Minecraft to Microsoft for $2,500,000,000 (that's
$2.5 billion), he was radically transparent about how it made him feel. He

/

tweeted that he'd "never felt more isolated" and how it had changed the dy-
namic of friendships and complicated romantic relationships.

Even if you're selling your company for much smaller amounts, money di-
rectly affects you and the people around you. It affects how you live your
life. When exiting the project you've been working on for years, that burn-
ing passion that kept you going, it's now gone. Many of us take our sense of
identity and meaning from our work and from what we create. After you
sell, that means a big part of your identity is now gone. Who am I for exam-
ple, if not "the Nomad List guy"?

You shouldn't just be your company. You're also your relationships, your
friends, your family, your activities outside work. If you don't have those,
you'll lose most of who you are when selling. And that's an excellent way to
shoot straight into a depression. Because you have a void. It sounds like I'm
exaggerating but it's so common around ambitious creative people to tun-
nel vision on their projects and forget everything around it. I know I do it,
although I try not to. That means even before you sell your company, you
have to actively work on making your identity more than just your compa-
ny to avoid this.

I'd highly suggest when selling your company to consult a psychologist.
Depending on where you live, talking to a psychologist might be frowned
upon. I know it used to be in my country The Netherlands. But I believe
everybody should talk to a psychologist regularly, especially in big life
changing moments like selling your company. If you don't like physically
going to a psychologist, that's no problem: there's lots of online psycholo-
gists you can talk to over Skype, or even text. One that I used before is
called Talkspace.

FIRE (Financial Independence, Retire Early)

I am extremely passionate about FIRE. It's a movement started on the in-
ternet by a blogger named Mr Money Moustache whose posts I've been
reading ever since he started in 2011.

/

The concept of FIRE is basically maximize how much money you save and
minimze how much you spend. Then with the money you saved, you can
safely take out 4%:

"In finance, investment advising, and
retirement planning, the Trinity study (also
called "the 4 percent rule") is an informal name
used to refer to an influential 1998 paper by
three professors of finance at Trinity
University.[1] It is one of a category of studies
that attempt to determine "safe withdrawal
rates" from retirement portfolios that contain
stocks and thus grow (or shrink) irregularly
over time.[2]"

— Trinity study on Wikipedia

In short this means that if you invest your money in a diversified portfolio,
you can generally take out 4% per year from the entire amount, and spend
that to live from. Because the return on a diversified portfolio is higher
than 4%, usually 7-10% (based on one of America's biggest stock markets,
the S&P500):

"According to historical records, the average
annual return [of the S&P500] since its
inception in 1926 through 2018 is
approximately 10%. The average annual return
since adopting 500 stocks into the index in
1957 through 2018 is roughly 8% (7.96%)."

— "What is the average annual return for the S&P 500?", Investopedia

/

Now let's say you sell your company for $1,000,000 in cash. If you invest it
in a diversified portfolio, you can then take out 4% per year, which is
$40,000/year, or $3,333/month. Depending on where you live, that could be
a nice amount to live off. The magical thing about FIRE is that this
$40,000/year will, with quite high odds, be returned perpetually (that
means forever). Being able to live off interest forever, means you don't
need to get back to work if you don't want.

FIRE to me sounds like the best option to choose when selling your compa-
ny. Instead of buying a Ferrari and an expensive house, you live off 4%. If
you sell your company for $100,000,000 and you take out $4M/year from
4% interest, sure, buy a Ferrari. But if you sell your company for $1M and
you can take only $40,000/year, I'd say live frugally. Note: this is the oppo-
site of what most people think of doing when they become rich. But it
should be the main thing if you ask me.

For more details on the FIRE Movement, see Reddit's subreddit /r/finan-
cialindependence.

Careers after being acquired

Keep working at your company

It is very common for the acquiring party to ask you to stay on at your com-
pany after it's sold. They will ask this to make sure the transition from you
to them operating it goes smoothly. Think of all the specific details about
your business you know that they don't. They'll generally want to keep you
on until they're completely knowledgeable enough to continue running
your business as you were running it before acquisition.

Now depending on the scale of an acquisition (e.g. $100k, $1M, $100M) and
type of company that acquires you, there's different ways to try and keep
you on. A typical way is to use what's called a vesting period. The acquiring
company will pay you in stock of their company (and usually cash too). The
stock will be vested over a time period of e.g. 2 to 4 years, that means the

/

stock progressively becomes fully owned by you over time. That's a way to
financially incentivize you to stay on:

"Based on our experience, most vesting
schemes foresee a vesting period of 36–48
months starting at or just before the
investment. The shares subject to vesting (let’s
call them “Vesting Shares”) gradually become
vested during this period, i.e. fully owned by
the founder without risk of losing them in case
of a departure."

— Tilman Langer

Another way include the previously mentioned earn out. Earn outs, or oth-
er types of bonuses, can be agreed to be paid but only if you stay on for a
certain time.

Staying on for a while can give you an emotionally more smooth ride. But
they can also make you feel being stuck at a company that you might not
want to be a part of anymore, especially now that you're not the owner any-
more. And you'll probably want to get on with your life at that point. I've
seen friends be in this position and it's emotionally soul-sucking. They're
just sitting it out. Not fun.

I'd always try to minimize vesting periods, and instead get paid fully in
cash (or actual stock that you can hold or sell immediately instead of vest-
ing) but agree to stay on to help the acquiring party with the transition for
awhile. That seems fair to both you and the acquirer.

Become an angel investor or venture capitalist

A highly common career after exiting with a significant amount of money
is is becoming an angel investor or venture capitalist. Angel investors are
wealthy people who provide seed funding, that is funding at the start of a

/

new company when it's hard to get any other funding. Venture capitalists
are investors who provide funding at all stages, usually as part of a partner-
ship with other people, which together form a VC fund. Funds might have a
core of partners and then raise money from institutional investors like re-
tirement funds and insurance companies looking for a return on their
capital.

If you're already wealthy from selling your company, the benefits of becom-
ing an angel or venture capitalist are that you can keep working in the field
of startups, give guidance through mentoring founders and in this way also
become an authority. For many people, being an angel or VC gives them
status, especially so in places like the Bay Area. It's a somewhat polite way
to communicate you're now rich.

But the reality is that angel investors generally have a negative return on
investment: to get a single big exit on a risky investment you need to make
a lot of investments. Big VC funds may invest in 500-1000 startups, where
only a few exists will pay back the loss on all the other investments. Being
an angel, you simply don't have enough capital to do so many investments.
So you're statistically almost guaranteed to lose money. Again, that's why
most angels do it for status and because they like to mentor people. If
that's your thing, go for it. But if it's not, don't just become an angel or VC
because it's the typical route. If you do, it might not be your thing and not
make you happy, and definitely not richer.

Start another company

You've spent years on your startup, and now you've sold it. That's years of
working maybe night and day on your project. Thinking about it while
you're not working, when you're in the shower, before you fall asleep and
when you wake up. It's probably taken over your life. Whether that's
healthy is for another book, but the reality is that it's very very hard to just
stop.

/

Which is why, most entrepreneurs will simply start another company after
they sell their previous one. They might take a break for a few months, or
even years. But the personality of an entrepreneur usually can't deal with
the bland routine of regular life. They need a passion project. That doesn't
mean it has to be another company, but very often it will be.

If you do decide to start another company, I have good news for you be-
cause your odds of success have probably increased:

"All else equal, a venture-capital-backed
entrepreneur who starts a company that goes
public has a 30 percent chance of succeeding in
his or her next venture. First-time
entrepreneurs, on the other hand, have only an
18 percent chance of succeeding, and
entrepreneurs who previously failed have a 20
percent chance of succeeding."

— Paul A. Gompers, Anna Kovner, Josh Lerner and David S. Scharfstein in
Harvard Business School Working Knowledge

The stress of starting another company might be higher though because
you're now well known:

/

"I know serial founders who shared this with
me: after a successful company, they feel like
their next thing must be bigger and better
(more successful, by most people's standards)
and it they can't achieve it, the frustration is
twice as hard to overcome. It, then, makes it
more difficult to let go or shut down the
company because you're convinced you can
make it again. Also, you're well-known after an
exit, and you don't want to disappoint people
with your next company being a failure."

— Àlex Rodríguez Bacardit on Twitter

But...let's to be devil's advocate here: I think it's important after selling
your company, to consider if you really want to get back to building anoth-
er one. Working as hard and obessively as many of us do (and I know I'm
one of those), it feels great, but it's extremely taxing and may narrow the
scope of your life. If work and money is your priority (and I know it is for
many), that's a pretty sad existence.

Even if you have a relationship, friends and family, are healthy and stay in
shape, dedicating another 5 years of your life to building another business
when you've already done may possibly just be a sign of your addiction to
work pulling you back in. You already won once, why do you need to win
another time? Because it's addictive. I know, I know, a business book telling
you not to start a business. But it might be good to consider this as a
thought exercise. What's your "why" here?

Because starting another business might just be the familiar choice for you,
but there's a lot of other ways to work hard and get meaning in your life
that aren't in business. And since you have money now, one of the big ones
being:

/

Charity and volunteer work

When you think of volunteer work, you might think of making food for the
soup kitchen to help homeless, or talk to elderly to keep them from being
lonely. Both are great ways to help, but if you have tech skills, there's prob-
ably more effective ways where you can apply your skills to help.

Catchafire, Fast Forward and Hashtag Charity are sites that lets you find
volunteer opportunities that need your specific professional skills. A lot of
the skills desired are technical: like building websites and apps, to business
skills: like creating a marketing strategy plan for NGOs.

If you're American, the Peace Corps is a great option too. It lets you go
abroad for a period of two years (which you can extend) and they're also in
need of volunteers with tech skills.

I'll be honest with you: I don't know many entrepreneurs who've done this.
But I think it should be a more popular option to do after you've made
enough money to not have to work again. Get out of your own ego and pur-
sue happiness by helping others. It's cliche, but it's proven to work.

Conclusion

Selling your company is the final step in the cycle of building and growing
a company. That doesn't mean it's necessary at all: there's lots of life-long
founders who never sold and are still working with pleasure on their com-
pany and still own it.

But selling can give you the financial and mental freedom to pursue the
next steps in your career and life, if you want to make that change. I'd say
most importantly: don't rush it and don't obsess over it. Exits are portrayed
as the most important thing in startups for a founder to reach. But many
exits don't necessarily make the founder financially independent or happy,
they're bad deals and ways for a founder to leave when their company is
doing bad. That's why you shouldn't rush it.

/

"Similar to raising money, the best time to sell
your startup is when you don’t need to or want
to. Paradoxically, you are probably thinking
about selling your startup as you are
experiencing a lack of traction, tough
competition, or difficult time fundraising.
However, this is a bad time to sell your startup:
you will have few bidders and be more likely to
acquiesce to the demands of anyone who does
show up."

— Justin Kan on Medium

The best time to sell is when you don't want to sell.

/

🎬 Epilogue

/

Epilogue

To conclude:

💡 Idea
Get an idea from problems in your own life. If you don't have problems
that are original enough, become a more original person. Don't build
products that are solutions in search of a problem.

🛠 Build
Build your idea with the tools you already know. Don't spend a year
learning some language you'll never use. Don't outsource building to
other people, that's a competitive disadvantage. Build only the core
functionality. The rest comes later.

🚀 Launch
Launch early and multiple times. Launch to famous startups websites
(like Product Hunt, Hacker News, The Next Web), mainstream websites
(like Reddit) and mainstream press (like Forbes).

But more importantly, find where your specific audience hangs out on
the internet (or in real life) and launch there. Launch in a friendly way,
that means "here's something I made that might be useful for you",
instead of acting like you're some big giant new startup coming to
change the world.

🌱 Grow
Grow organically. A great product that people really need which is
better than the rest will pull people in. You don't need ads for that.

/

Don't hire people if there's no revenue yet. Don't hire many people if
there's revenue either. Stay lean and fast. Do things yourself.

💰 Monetize
Monetize by asking users for money. Don't sell their data. Don't put ads
everywhere. Don't dilute your product. Be honest that you need money
to build the product they love and they'll be fine paying for it.

🤖 Automate
Automate by writing programs that do stuff that you do repeatedly.
Only automate if it's worth the time saved. For stuff that's too hard to
automate or not worth it, hire contractors. Let them work as
autonomously as possible. Where possible let robots manage them (for
example by giving them alerts when things happen in your product).
This lets you take time off, or work on your next business.

🚪 Exit
Exit by not putting your company for sale, but letting buyers come to
you. Filter out the majority of buyers that aren't serious. With the
serious buyers left, negotiate a price by valuating your own company.
Price it agressively high. Always keep the bargaining power on your side
of the table. Get paid in cash, not stock and don't fall for the trap of
earnout bonuses. Make sure you're prepared for the emotional fallout of
selling (and missing) your business.

A farewell

I hope if you have read this far, this book has helped you in shipping at
least one product, and hopefully many more in the future.

Take action

/

The most important message that I can give you in your future path of
building products, or even the rest of your life, is to take action. Taking ac-
tion is the scariest, most difficult part of life.

It's also your biggest competitive advantage. Why? Because most people
don't.

There's millions of wannabe artists, entrepeneurs and creatives who have
really great ideas, but never take the action to finish something, launch it
and push it out there. The people that you know who are succcesful are
usually not the best, but they were the ones getting over their fear and tak-
ing action.

I know I sound like a self-help guru here, but that's what self-help gurus are
right about, repeated action is what it comes down to. Relentlessly taking
action, iterating and trying for years, in some disciplines for decades, until
you get to where you wanted to be.

Listen to your intuition

Simply doing what this book tells you to do also will not make you succes-
ful. While I am putting my ideas on to paper, they're already by definition
outdated. It's up to you to get your own ideas, create your own style of cre-
ating which to be relevant in the future should probably be completely dif-
ferent from mine. So don't clone what I'm doing, or what others are doing,
you're already too late, it won't work. Take inspiration but do your own
thing.

The hardest thing to do in this super interconnected world where everyone
is starting to be more alike, is to become a unique person and find your
own personality. Listen deeply to your own desires and your own problems.
That inner voice, your intuition; it probably isn't wrong, even if it says
something completely different than everyone around you. But it is unde-
veloped and to develop it, it needs to be expressed by you through creativi-
ty: by building a product, creating an artwork, writing a book or any other

/

way of expression. Only then does your idea stand a chance to compete
with other, well executed, ideas.

The typical story of entrepeneurs being laughed at for their ideas, just be-
fore they execute them and change an entire industry happens for a reason.
They have a unique problem or perspective, from a their unique personali-
ty, and by definition that won't match with people around them and society
at large (hence it being unique). Most of these ideas won't go anywhere, but
some get you very far. This doesn't mean you need to start SpaceX, by all
means start with something small, but make sure it comes from your own
personality, not other people or companies.

Now that you've read this book until the end, put it away, get out there
and...

Make. Your. Product

I wish you all the luck in the world on your journey ^___o

/

THE END.

No really, this is it!

/

